CoAl LDHs with different molar ratio of Ni have been prepared by chemical co -precipitation method.XRD results show that these materials have layered struc tures.Electrochemical tests show that Co(Ni)Al LDHs as electr...CoAl LDHs with different molar ratio of Ni have been prepared by chemical co -precipitation method.XRD results show that these materials have layered struc tures.Electrochemical tests show that Co(Ni)Al LDHs as electrode material hav e typical capacit ive properties in a wide voltage range of0.0to0.6V;Co(Ni)Al LDH(Ni∶Co =4∶6)as an electrode material has the highest capacitance of960F · g -1 and good cycling performance.But the poor capacitive properties of NiAl LDH electrode are showed in a narrow voltage range of0.3to0.55V.展开更多
Shuttle effect is one of the most serious disadvantages in lithium-sulfur battery which results in poor cycle performance and hinders the commercialization of Li-S battery.To reduce the dissolution of polysulfides int...Shuttle effect is one of the most serious disadvantages in lithium-sulfur battery which results in poor cycle performance and hinders the commercialization of Li-S battery.To reduce the dissolution of polysulfides into the electrolyte and prolong the cycling stability,nanoparticle-stacked metal nitride derived from layered double hydroxides(LDHs)as an interlayer was inserted between sulfur cathode and separator to confine polysulfides by physical and chemical interactions.Meanwhile,the surface of metal nitride will form an oxide passivation layer.The passivation layer possesses hydrophilic metal-O group and provides a polar surface for strong binding with polysulfide.What’s more,the nanoparticlesstacked structure could immerge and retain electrolyte well,which could enhance the ability of promoting the electron exchange rate.The sulfur electrode with nanoparticle-stacked metal nitride interlayer has an excellent cycle performance owing to the interactions between metal nitride and polysulfides.The battery delivered an initial capacity of 764.6 m Ahg^(-1) and still possesses a capacity of 477.5 mAhg^(-1) with the retention of 62.4% after 800 cycles.展开更多
Engineering complex nanocomposites that specifically target the hepatitis B virus (HBV) and overcome the limitations of current therapies such as limited efficacy and serious side effects is very challenging. Here, ...Engineering complex nanocomposites that specifically target the hepatitis B virus (HBV) and overcome the limitations of current therapies such as limited efficacy and serious side effects is very challenging. Here, for the first time, the antiviral effect of engineered plasmonic gold and layered double hydroxide self-assemblies (AuNPs/LDHs) is demonstrated, using HBV as a model virus and hepatoma-derived HepG2.2.215 ceils for viral replication, assembly, and secretion of infectious virions and subviral particles. AuNPs/LDHs were obtained by a simple, cost-effective procedure in which small AuNPs (-3.5 nm) were directly obtained and organized on the surface of larger LDH nanoparticles (-150 nm) by exploiting the capability of MgLDH, ZnLDH, and MgFeLDH to manifest their "structural memory" in the aqueous solution of Au(O2CCH3)3. The self-assembly approach of AuNPs and LDHs was assessed by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (PXRD), and UV-Vis analysis (UV-Vis). All AuNPs/LDHs tested reduced the amount of viral and subviral particles released from treated cells by up to 80% and exhibited good cytocompatibility. AuNPs/MgFeLDH showed the highest antiviral HBV response with more than 90% inhibition of HBV secretion for the whole concentration range. Preliminary studies on the mechanism of HBV inhibition reveals that in the presence of AuNPs/LDHs, HBV particles are sequestered within the treated cells. The antiviral and low cytotoxic plasmonic properties of these Au/LDH nanocomposites indicate that they hold significant potential to be tailored as novel efficient therapeutics for the treatment of hepatitis B.展开更多
Exfoliative Mg/Al layered double hydroxide (Mg/Al-LDHGly) was obtained via hydrothermal synthesis in the presence of glyeine. The product prepared by hydrothermal reaction for 10 h at 120℃possesses high thermal sta...Exfoliative Mg/Al layered double hydroxide (Mg/Al-LDHGly) was obtained via hydrothermal synthesis in the presence of glyeine. The product prepared by hydrothermal reaction for 10 h at 120℃possesses high thermal stability and maximal erystallite size in a, c directions. TEM and SEM analyses show that Mg/Al-LDHGly was of well-crystallized hexagonal product with stacks of slightly curved layers. Benefiting from mechanism investigation on its gradual delamination in formamide, rapid delamination of Mg/Al-LDHGly at room temperature was realized, which provided fundamental for preparation of (Mg/Al-LDHGly)/polymer nanoeomposites by using exfoliation-adsorption method.展开更多
Oxygen evolution reaction (OER) electrolysis, as an important reaction involved in water splitting and rechargeable metal-air batteries, has attracted increasing attention for clean energy generation and efficient e...Oxygen evolution reaction (OER) electrolysis, as an important reaction involved in water splitting and rechargeable metal-air batteries, has attracted increasing attention for clean energy generation and efficient energy storage. Nickel/iron (NiFe)-based compounds have been known as active OER catalysts since the last century, and renewed interest has been witnessed in recent years on developing advanced NiFe-based materials for better activity and stability. In this review, we present the early discovery and recent progress on NiFe-based OER electrocatalysts in terms of chemical properties, synthetic methodologies and catalytic performances. The advantages and disadvantages of each class of NiFe-based compounds are summarized, including NiFe alloys, electrodeposited films and layered double hydroxide nanoplates. Some mechanistic studies of the active phase of NiFe-based compounds are introduced and discussed to give insight into the nature of active catalytic sites, which could facilitate further improving NiFe based OER electrocatalysts. Finally, some applications of NiFe- based compounds for OER are described, including the development of an electrolyzer operating with a single AAA battery with voltage below 1.5 V and high performance rechargeable Zn-air batteries.展开更多
文摘CoAl LDHs with different molar ratio of Ni have been prepared by chemical co -precipitation method.XRD results show that these materials have layered struc tures.Electrochemical tests show that Co(Ni)Al LDHs as electrode material hav e typical capacit ive properties in a wide voltage range of0.0to0.6V;Co(Ni)Al LDH(Ni∶Co =4∶6)as an electrode material has the highest capacitance of960F · g -1 and good cycling performance.But the poor capacitive properties of NiAl LDH electrode are showed in a narrow voltage range of0.3to0.55V.
基金supported by the National Natural Science Foundation of China(21701043,51402100,50702020,21573066 and 81171461)the Provincial Natural Science Foundation of Hunan(2016JJ1006,2016TP1009 and 11JJ4013)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province
文摘Shuttle effect is one of the most serious disadvantages in lithium-sulfur battery which results in poor cycle performance and hinders the commercialization of Li-S battery.To reduce the dissolution of polysulfides into the electrolyte and prolong the cycling stability,nanoparticle-stacked metal nitride derived from layered double hydroxides(LDHs)as an interlayer was inserted between sulfur cathode and separator to confine polysulfides by physical and chemical interactions.Meanwhile,the surface of metal nitride will form an oxide passivation layer.The passivation layer possesses hydrophilic metal-O group and provides a polar surface for strong binding with polysulfide.What’s more,the nanoparticlesstacked structure could immerge and retain electrolyte well,which could enhance the ability of promoting the electron exchange rate.The sulfur electrode with nanoparticle-stacked metal nitride interlayer has an excellent cycle performance owing to the interactions between metal nitride and polysulfides.The battery delivered an initial capacity of 764.6 m Ahg^(-1) and still possesses a capacity of 477.5 mAhg^(-1) with the retention of 62.4% after 800 cycles.
文摘Engineering complex nanocomposites that specifically target the hepatitis B virus (HBV) and overcome the limitations of current therapies such as limited efficacy and serious side effects is very challenging. Here, for the first time, the antiviral effect of engineered plasmonic gold and layered double hydroxide self-assemblies (AuNPs/LDHs) is demonstrated, using HBV as a model virus and hepatoma-derived HepG2.2.215 ceils for viral replication, assembly, and secretion of infectious virions and subviral particles. AuNPs/LDHs were obtained by a simple, cost-effective procedure in which small AuNPs (-3.5 nm) were directly obtained and organized on the surface of larger LDH nanoparticles (-150 nm) by exploiting the capability of MgLDH, ZnLDH, and MgFeLDH to manifest their "structural memory" in the aqueous solution of Au(O2CCH3)3. The self-assembly approach of AuNPs and LDHs was assessed by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (PXRD), and UV-Vis analysis (UV-Vis). All AuNPs/LDHs tested reduced the amount of viral and subviral particles released from treated cells by up to 80% and exhibited good cytocompatibility. AuNPs/MgFeLDH showed the highest antiviral HBV response with more than 90% inhibition of HBV secretion for the whole concentration range. Preliminary studies on the mechanism of HBV inhibition reveals that in the presence of AuNPs/LDHs, HBV particles are sequestered within the treated cells. The antiviral and low cytotoxic plasmonic properties of these Au/LDH nanocomposites indicate that they hold significant potential to be tailored as novel efficient therapeutics for the treatment of hepatitis B.
基金ACKN0WLEDGEMENT This work was supported by the National Natural Science Foundation of China (No.50323005, No.50476026).
文摘Exfoliative Mg/Al layered double hydroxide (Mg/Al-LDHGly) was obtained via hydrothermal synthesis in the presence of glyeine. The product prepared by hydrothermal reaction for 10 h at 120℃possesses high thermal stability and maximal erystallite size in a, c directions. TEM and SEM analyses show that Mg/Al-LDHGly was of well-crystallized hexagonal product with stacks of slightly curved layers. Benefiting from mechanism investigation on its gradual delamination in formamide, rapid delamination of Mg/Al-LDHGly at room temperature was realized, which provided fundamental for preparation of (Mg/Al-LDHGly)/polymer nanoeomposites by using exfoliation-adsorption method.
基金Supported by Open Fund of State Key Laboratory of Fire Science(HZ2010-KF05)China Postdoctoral Science Foundation(2012M511913)Science Fund of Anhui Education Department(KJ2012A074)
基金Young Major Teachers Project of Henan Province(No.2011GGJS-162)Undergraduate Students Innovating Foundation of Chemistry and Chemical Engineering of Zhoukou Normal University(No.HYDC201416)
文摘Oxygen evolution reaction (OER) electrolysis, as an important reaction involved in water splitting and rechargeable metal-air batteries, has attracted increasing attention for clean energy generation and efficient energy storage. Nickel/iron (NiFe)-based compounds have been known as active OER catalysts since the last century, and renewed interest has been witnessed in recent years on developing advanced NiFe-based materials for better activity and stability. In this review, we present the early discovery and recent progress on NiFe-based OER electrocatalysts in terms of chemical properties, synthetic methodologies and catalytic performances. The advantages and disadvantages of each class of NiFe-based compounds are summarized, including NiFe alloys, electrodeposited films and layered double hydroxide nanoplates. Some mechanistic studies of the active phase of NiFe-based compounds are introduced and discussed to give insight into the nature of active catalytic sites, which could facilitate further improving NiFe based OER electrocatalysts. Finally, some applications of NiFe- based compounds for OER are described, including the development of an electrolyzer operating with a single AAA battery with voltage below 1.5 V and high performance rechargeable Zn-air batteries.