Aspect-BasedSentimentClassification(ABSC)属于细粒度情感分析任务之一,旨在发现实体方面(Aspect)相关的情感倾向.本论文中提出一种基于胶囊网络的模型:MADC(Model based on Asp-Routing and Doc-Routing Capsule),通过迁移模型将文...Aspect-BasedSentimentClassification(ABSC)属于细粒度情感分析任务之一,旨在发现实体方面(Aspect)相关的情感倾向.本论文中提出一种基于胶囊网络的模型:MADC(Model based on Asp-Routing and Doc-Routing Capsule),通过迁移模型将文档级别的特征和语义信息用于方面级情感分析中,针对文档级别和句子级别的的任务,分别使用了基于注意力机制的AspRouting和Doc-Routing动态路由方法,加强了句子级别任务情感分析的可信度.为了让模型识别特定领域词向量的语义信息,文章使用双嵌入词向量加位置信息的表示方法,通过卷积神经网络抽取特征作为胶囊网络的输入,再使用两层动态路由算法使网络共享迁移学习的特征胶囊和主胶囊,最后针对不同的任务使用不同的类胶囊输出向量对方面情感或文档级别情感作出极性预测.文章通过在数据集上与多个框架的对比论证了模型的有效性.展开更多
【目的】对跨语言情感分析的研究脉络进行梳理总结。【文献范围】以Web of Science数据库为检索平台,以TS=cross lingual sentiment OR cross lingual word embedding为检索式,筛选90篇文献进行述评。【方法】根据跨语言情感分析所采用...【目的】对跨语言情感分析的研究脉络进行梳理总结。【文献范围】以Web of Science数据库为检索平台,以TS=cross lingual sentiment OR cross lingual word embedding为检索式,筛选90篇文献进行述评。【方法】根据跨语言情感分析所采用的技术进行分类概述,包括基于机器翻译及其改进、基于平行语料库、基于双语情感词典三种早期的主要方法,再到引入Word2Vec和GolVe等词向量模型后,基于跨语言词向量模型的方法,最后到2019年以来基于Multi-BERT等预训练模型的方法。【结果】总结跨语言情感分析相关研究的主要思路、方法模型、不足之处等,分析现有研究覆盖的语言、数据集及其性能。发现虽然Multi-BERT等预训练模型在零样本的跨语言情感分析上取得较好性能,但是仍然存在语言敏感性问题。早期的跨语言情感分析方法对现有研究仍有一定指导和参考价值。【局限】部分跨语言情感分析模型属于混合模型,分类时仅按照主要方法进行归纳。【结论】展望跨语言情感分析的未来发展和亟待解决的问题。随着预训练模型对多语言语义的深层次挖掘,适用于更多更广泛语种的跨语言情感分析模型将是未来发展方向。展开更多
文摘Aspect-BasedSentimentClassification(ABSC)属于细粒度情感分析任务之一,旨在发现实体方面(Aspect)相关的情感倾向.本论文中提出一种基于胶囊网络的模型:MADC(Model based on Asp-Routing and Doc-Routing Capsule),通过迁移模型将文档级别的特征和语义信息用于方面级情感分析中,针对文档级别和句子级别的的任务,分别使用了基于注意力机制的AspRouting和Doc-Routing动态路由方法,加强了句子级别任务情感分析的可信度.为了让模型识别特定领域词向量的语义信息,文章使用双嵌入词向量加位置信息的表示方法,通过卷积神经网络抽取特征作为胶囊网络的输入,再使用两层动态路由算法使网络共享迁移学习的特征胶囊和主胶囊,最后针对不同的任务使用不同的类胶囊输出向量对方面情感或文档级别情感作出极性预测.文章通过在数据集上与多个框架的对比论证了模型的有效性.
文摘【目的】对跨语言情感分析的研究脉络进行梳理总结。【文献范围】以Web of Science数据库为检索平台,以TS=cross lingual sentiment OR cross lingual word embedding为检索式,筛选90篇文献进行述评。【方法】根据跨语言情感分析所采用的技术进行分类概述,包括基于机器翻译及其改进、基于平行语料库、基于双语情感词典三种早期的主要方法,再到引入Word2Vec和GolVe等词向量模型后,基于跨语言词向量模型的方法,最后到2019年以来基于Multi-BERT等预训练模型的方法。【结果】总结跨语言情感分析相关研究的主要思路、方法模型、不足之处等,分析现有研究覆盖的语言、数据集及其性能。发现虽然Multi-BERT等预训练模型在零样本的跨语言情感分析上取得较好性能,但是仍然存在语言敏感性问题。早期的跨语言情感分析方法对现有研究仍有一定指导和参考价值。【局限】部分跨语言情感分析模型属于混合模型,分类时仅按照主要方法进行归纳。【结论】展望跨语言情感分析的未来发展和亟待解决的问题。随着预训练模型对多语言语义的深层次挖掘,适用于更多更广泛语种的跨语言情感分析模型将是未来发展方向。