为了提高齿轮故障诊断准确率,解决齿轮故障诊断中数据量大、提取特征困难等问题,构建了齿轮故障诊断系统,采用深度学习方法建立了齿轮故障诊断模型,提出一种基于双层长短时记忆(Binary Long Short Term Memory,Bi LSTM)网络的故障诊断方...为了提高齿轮故障诊断准确率,解决齿轮故障诊断中数据量大、提取特征困难等问题,构建了齿轮故障诊断系统,采用深度学习方法建立了齿轮故障诊断模型,提出一种基于双层长短时记忆(Binary Long Short Term Memory,Bi LSTM)网络的故障诊断方法,并对该方法进行了性能分析和对比实验。结果表明:采用Bi LSTM网络方法进行齿轮故障诊断的准确率达到99.76%,分类效果优于支持向量机、Xg Boost、卷积神经网络和长短时记忆(LSTM)网络等方法,有效地提高了故障诊断精度。展开更多
文摘为了提高齿轮故障诊断准确率,解决齿轮故障诊断中数据量大、提取特征困难等问题,构建了齿轮故障诊断系统,采用深度学习方法建立了齿轮故障诊断模型,提出一种基于双层长短时记忆(Binary Long Short Term Memory,Bi LSTM)网络的故障诊断方法,并对该方法进行了性能分析和对比实验。结果表明:采用Bi LSTM网络方法进行齿轮故障诊断的准确率达到99.76%,分类效果优于支持向量机、Xg Boost、卷积神经网络和长短时记忆(LSTM)网络等方法,有效地提高了故障诊断精度。