期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
CNN-BiGRU网络中引入注意力机制的中文文本情感分析 被引量:27
1
作者 王丽亚 刘昌辉 +1 位作者 蔡敦波 卢涛 《计算机应用》 CSCD 北大核心 2019年第10期2841-2846,共6页
传统卷积神经网络(CNN)中同层神经元之间信息不能互传,无法充分利用同一层次上的特征信息,缺乏句子体系特征的表示,从而限制了模型的特征学习能力,影响文本分类效果。针对这个问题,提出基于CNN-BiGRU联合网络引入注意力机制的模型,采用C... 传统卷积神经网络(CNN)中同层神经元之间信息不能互传,无法充分利用同一层次上的特征信息,缺乏句子体系特征的表示,从而限制了模型的特征学习能力,影响文本分类效果。针对这个问题,提出基于CNN-BiGRU联合网络引入注意力机制的模型,采用CNN-BiGRU联合网络进行特征学习。首先利用CNN提取深层次短语特征,然后利用双向门限循环神经网络(BiGRU)进行序列化信息学习以得到句子体系的特征和加强CNN池化层特征的联系,最后通过增加注意力机制对隐藏状态加权计算以完成有效特征筛选。在数据集上进行的多组对比实验结果表明,该方法取得了91.93%的F1值,有效地提高了文本分类的准确率,时间代价小,具有很好的应用能力。 展开更多
关键词 卷积神经网络 双向门限循环神经网络 注意力机制 中文文本情感分析
下载PDF
基于字符级双通道复合网络的中文文本情感分析 被引量:6
2
作者 王丽亚 刘昌辉 +2 位作者 蔡敦波 赵彤洲 王梦 《计算机应用研究》 CSCD 北大核心 2020年第9期2674-2678,共5页
针对传统卷积神经网络(CNN)缺乏句子体系特征的表示,以及传统双向门限循环神经网络(BiGRU)缺乏提取深层次特征能力。以中文文本为研究对象,在字符级词向量的基础上提出双通道的CNN-BiGRU复合网络,同时引入注意力机制的模型进行情感分析... 针对传统卷积神经网络(CNN)缺乏句子体系特征的表示,以及传统双向门限循环神经网络(BiGRU)缺乏提取深层次特征能力。以中文文本为研究对象,在字符级词向量的基础上提出双通道的CNN-BiGRU复合网络,同时引入注意力机制的模型进行情感分析。首先,在单通道上利用CNN提取深层次短语特征,利用BiGRU提取全局特征的能力深度学习短语体系特征,从而得到句子体系的特征表示;再通过增加注意力层进行有效特征筛选;最后,采用双通道结构的复合网络,丰富了特征信息,加强了模型的特征学习能力。在数据集上进行多组对比实验,该方法取得了92.73%的F1值结果,优于对照组,说明提出的模型能有效地提高文本分类的准确率。同时在单句测试上量化出模型优势,且实现了模型的实际应用能力。 展开更多
关键词 卷积神经网络 双向门限循环神经网络 注意力机制 中文文本情感分析
下载PDF
基于多头自注意力和并行混合模型的文本情感分析 被引量:3
3
作者 李辉 黄钰杰 《河南理工大学学报(自然科学版)》 CAS 北大核心 2021年第1期125-132,共8页
针对以往研究大多使用单一模型进行文本情感分析,导致无法很好地捕捉相关文本的情感特征,从而造成情感分析效果不理想的问题,提出一种基于多头自注意力和并行混合模型的文本情感分析方法。首先,利用Word2vec模型捕捉单词的语义特征,训... 针对以往研究大多使用单一模型进行文本情感分析,导致无法很好地捕捉相关文本的情感特征,从而造成情感分析效果不理想的问题,提出一种基于多头自注意力和并行混合模型的文本情感分析方法。首先,利用Word2vec模型捕捉单词的语义特征,训练词向量;其次,借助双层多头自注意力机制(double layer multi-head self-attention,DLMA)学习文本内部的词依赖关系,捕获其内部结构特征;再次,使用并行的双向门限循环神经网络(bi-directional gated recurrent nnit,BiGRU)获取文本的序列特征;最后,借助改进的并行卷积神经网络(convolutional neural network,CNN)提取深层次特征信息。将该模型分别在2个数据集上进行实验验证,其准确率分别达到92.71%和91.08%。结果表明,该方法比其他模型具有更好的学习能力。 展开更多
关键词 多头自注意力 双向门限循环神经网络 卷积神经网络 文本情感分析
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部