期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于Bi-LSTM的浅层地下双孔洞探测技术
1
作者 梁靖 张红 +3 位作者 叶晨 周立成 刘泽佳 汤立群 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第6期778-783,共6页
文章探究一种基于深度学习的浅层地下孔洞探测技术,以应对地下孔洞给桩基施工安全所造成的严重威胁。基于浅层地震反射波法的原理,采用基础施工过程中的桩锤激震作为激励源,通过在探测区域地表上布置少量加速度传感器采集孔洞反射信号,... 文章探究一种基于深度学习的浅层地下孔洞探测技术,以应对地下孔洞给桩基施工安全所造成的严重威胁。基于浅层地震反射波法的原理,采用基础施工过程中的桩锤激震作为激励源,通过在探测区域地表上布置少量加速度传感器采集孔洞反射信号,并将反射信号作为深度学习的输入,以输出孔洞信息,建立一种新型的智能孔洞探测方法。结果表明,双向长短期记忆神经网络(bidirectional long short-term memory neural network,Bi-LSTM)的预测模型对于地下双孔洞的工况具有较高的识别准确率,在容许误差为2 m的情况下,孔洞位置和直径的预测准确率可达95.3%。该研究验证了基于深度学习的多孔洞探测技术的可行性,有望为施工前期土层地质状况的评估提供技术保障。 展开更多
关键词 地下孔洞探测 桩锤激震 深度学习 双向长短期记忆神经网络(bi-lstm) 有限元仿真
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部