结构的加速度响应可以反映结构的状态信息,蕴含结构的损伤特征。针对目前输电塔健康监测系统产生大量数据而无法有效分析和诊断输电塔损伤的问题,利用结构输出加速度响应数据的时序关系,提出了基于双向长短时记忆网络(bi-directional lo...结构的加速度响应可以反映结构的状态信息,蕴含结构的损伤特征。针对目前输电塔健康监测系统产生大量数据而无法有效分析和诊断输电塔损伤的问题,利用结构输出加速度响应数据的时序关系,提出了基于双向长短时记忆网络(bi-directional long and short-term memory,BiLSTM)的损伤识别方法,并采用概率寻优方法贝叶斯优化(Bayesian optimization,BO)确定网络模型超参数。首先描述了BiLSTM的基本原理,给出基于贝叶斯优化的超参数选取策略,从而提出了基于BO-BiLSTM模型的损伤识别方法。然后使用该方法对输电塔有限元模型进行了损伤定位与模式识别,测试集的整体识别准确率达到94.2%。为了验证该方法对实际结构的损伤识别效果,提出基于异源数据的损伤识别方式:将输电塔有限元模型数据作为模型训练的样本训练BO-BiLSTM模型,使用试验数据用作验证集检验损伤识别效果。识别结果表明BO-BiLSTM可以较为准确的识别真实结构的损伤情况,识别效果较BiLSTM以及BO-LSTM更稳定。展开更多
针对人体活动传感器数据的时序性特点,以及当前机器学习算法过度依赖手工特征提取的问题,提出了一种融合卷积神经网络和双向长短期记忆网络的深度学习模型(convolutional neural network-bidirectional long short term memory network,...针对人体活动传感器数据的时序性特点,以及当前机器学习算法过度依赖手工特征提取的问题,提出了一种融合卷积神经网络和双向长短期记忆网络的深度学习模型(convolutional neural network-bidirectional long short term memory network,CNN-BiLSTM)进行人体活动识别(human activity recognition,HAR)。首先对人体活动数据进行样本分割,然后采用卷积神经网络(convolutional neural networks,CNN)自动提取人体活动数据的特征,再通过双向长短时记忆网络(bi-directional long-short term memory,BiLSTM)学习人体活动数据特征在时间序列上前后两个方向的相关性,最后利用softmax分类器实现对人体活动分类。DaLiAc公开数据集上的仿真实验结果表明:基于CNN-BiLSTM网络的人体活动识别方法对13种人体活动的识别准确率达到了97.7%,与仅具备时间特征学习的LSTM网络和BiLSTM网络相比,具有更好的识别分类效果。展开更多
科学有效地预测水质对于水环境的可持续发展和人类健康具有重要意义,为此以固原市某黄河断面的水质监测数据为研究对象,提出了基于指标客观性的权重赋权(Criteria Importance Though Intercriteria Correlation,CRITIC)法和改进的秃鹰搜...科学有效地预测水质对于水环境的可持续发展和人类健康具有重要意义,为此以固原市某黄河断面的水质监测数据为研究对象,提出了基于指标客观性的权重赋权(Criteria Importance Though Intercriteria Correlation,CRITIC)法和改进的秃鹰搜索(Improved Bald Eagle Search,IBES)算法优化双向长短时记忆网络(Bidirectional Long Short-Term Memory Network,BiLSTM)的组合水质等级预测模型。首先,采用CRITIC法确定各水质指标的权重,加权求和获得一项综合水质指标,从而提出一种改进的水质评价指标体系,以为BiLSTM提供更丰富、更可靠的水质特征信息。其次,在训练过程中引入Logistic映射和莱维飞行策略,并设计交叉共享及准反向搜索策略优化秃鹰搜索(Bald Eagle Search,BES)算法,以提升其种群多样性,增强寻优能力。最后,通过IBES算法迭代寻找BiLSTM的最佳学习率、隐藏层节点数以及正则化系数的超参数组合,进一步提高其预测水平。结果显示:与IBES-BiLSTM、BES-BiLSTM、GA-BiLSTM、PSO-BiLSTM和BiLSTM等模型相比,CRITIC-IBES-BiLSTM模型进行水质等级预测的准确率、精准率、召回率及F_(1)均最高,且具有更好的稳定性。展开更多
文摘结构的加速度响应可以反映结构的状态信息,蕴含结构的损伤特征。针对目前输电塔健康监测系统产生大量数据而无法有效分析和诊断输电塔损伤的问题,利用结构输出加速度响应数据的时序关系,提出了基于双向长短时记忆网络(bi-directional long and short-term memory,BiLSTM)的损伤识别方法,并采用概率寻优方法贝叶斯优化(Bayesian optimization,BO)确定网络模型超参数。首先描述了BiLSTM的基本原理,给出基于贝叶斯优化的超参数选取策略,从而提出了基于BO-BiLSTM模型的损伤识别方法。然后使用该方法对输电塔有限元模型进行了损伤定位与模式识别,测试集的整体识别准确率达到94.2%。为了验证该方法对实际结构的损伤识别效果,提出基于异源数据的损伤识别方式:将输电塔有限元模型数据作为模型训练的样本训练BO-BiLSTM模型,使用试验数据用作验证集检验损伤识别效果。识别结果表明BO-BiLSTM可以较为准确的识别真实结构的损伤情况,识别效果较BiLSTM以及BO-LSTM更稳定。
文摘针对人体活动传感器数据的时序性特点,以及当前机器学习算法过度依赖手工特征提取的问题,提出了一种融合卷积神经网络和双向长短期记忆网络的深度学习模型(convolutional neural network-bidirectional long short term memory network,CNN-BiLSTM)进行人体活动识别(human activity recognition,HAR)。首先对人体活动数据进行样本分割,然后采用卷积神经网络(convolutional neural networks,CNN)自动提取人体活动数据的特征,再通过双向长短时记忆网络(bi-directional long-short term memory,BiLSTM)学习人体活动数据特征在时间序列上前后两个方向的相关性,最后利用softmax分类器实现对人体活动分类。DaLiAc公开数据集上的仿真实验结果表明:基于CNN-BiLSTM网络的人体活动识别方法对13种人体活动的识别准确率达到了97.7%,与仅具备时间特征学习的LSTM网络和BiLSTM网络相比,具有更好的识别分类效果。
文摘科学有效地预测水质对于水环境的可持续发展和人类健康具有重要意义,为此以固原市某黄河断面的水质监测数据为研究对象,提出了基于指标客观性的权重赋权(Criteria Importance Though Intercriteria Correlation,CRITIC)法和改进的秃鹰搜索(Improved Bald Eagle Search,IBES)算法优化双向长短时记忆网络(Bidirectional Long Short-Term Memory Network,BiLSTM)的组合水质等级预测模型。首先,采用CRITIC法确定各水质指标的权重,加权求和获得一项综合水质指标,从而提出一种改进的水质评价指标体系,以为BiLSTM提供更丰富、更可靠的水质特征信息。其次,在训练过程中引入Logistic映射和莱维飞行策略,并设计交叉共享及准反向搜索策略优化秃鹰搜索(Bald Eagle Search,BES)算法,以提升其种群多样性,增强寻优能力。最后,通过IBES算法迭代寻找BiLSTM的最佳学习率、隐藏层节点数以及正则化系数的超参数组合,进一步提高其预测水平。结果显示:与IBES-BiLSTM、BES-BiLSTM、GA-BiLSTM、PSO-BiLSTM和BiLSTM等模型相比,CRITIC-IBES-BiLSTM模型进行水质等级预测的准确率、精准率、召回率及F_(1)均最高,且具有更好的稳定性。