The stability of the ground state of two-component Bose-Einstein condensates (BEGs) loaded into the central well of an axially symmetric Bessel lattices (BLs) potential with attractive or repulsive atoms interacti...The stability of the ground state of two-component Bose-Einstein condensates (BEGs) loaded into the central well of an axially symmetric Bessel lattices (BLs) potential with attractive or repulsive atoms interactions is studied using the time-dependent Gross-Pitaevskii equation (GPE). By using the variational method, we find that stable ground state of two-component BEGs can exist in BLs. The BLs's depth and the intra-species atom interaction play an important role in the stability of ground state. The collapse of two-component BEGs in BLs is also studied and a collapse condition for trapped two-component BEGs is obtained. It is shown that the two-component BEGs exhibit rich collapse dynamics. That is, the two-component BEGs can collapse in the system with both intra- and inter-attractive, or with intra-attractive and inter-repulsive, or with intra-repulsive and inter-attractive atom interactions. Furthermore, the control of the collapse of the two-component BEGs in BLs is discussed in detail. The stability diagram of the ground state in parameter space is obtained. The results show that the collapse of two-component BEGs can be controlled by temporal modulation of the atom interaction.展开更多
基金National Natural Science Foundation of China under Grant Nos.10774120 and 10475066the Natural Science Foundation of Gansu Province under Grant No.3ZS051-A25-013the Creation of Science and Technology of Northwest Normal University,China under Gant No.NWNU-KJCXGC-03-17
文摘The stability of the ground state of two-component Bose-Einstein condensates (BEGs) loaded into the central well of an axially symmetric Bessel lattices (BLs) potential with attractive or repulsive atoms interactions is studied using the time-dependent Gross-Pitaevskii equation (GPE). By using the variational method, we find that stable ground state of two-component BEGs can exist in BLs. The BLs's depth and the intra-species atom interaction play an important role in the stability of ground state. The collapse of two-component BEGs in BLs is also studied and a collapse condition for trapped two-component BEGs is obtained. It is shown that the two-component BEGs exhibit rich collapse dynamics. That is, the two-component BEGs can collapse in the system with both intra- and inter-attractive, or with intra-attractive and inter-repulsive, or with intra-repulsive and inter-attractive atom interactions. Furthermore, the control of the collapse of the two-component BEGs in BLs is discussed in detail. The stability diagram of the ground state in parameter space is obtained. The results show that the collapse of two-component BEGs can be controlled by temporal modulation of the atom interaction.