期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融入注意力机制的小样本遥感图像场景分类 被引量:1
1
作者 张多纳 赵宏佳 +2 位作者 鲁远耀 崔健 张宝昌 《计算机工程与应用》 CSCD 北大核心 2024年第4期173-182,共10页
遥感图像场景分类是计算机视觉领域的热点研究方向,对遥感图像场景及其语义理解意义重大。目前,基于深度学习的遥感图像场景分类方法在该领域占据主导地位。然而实际应用场景面临着样本数据较少、模型泛化能力较差的问题,致使基于深度... 遥感图像场景分类是计算机视觉领域的热点研究方向,对遥感图像场景及其语义理解意义重大。目前,基于深度学习的遥感图像场景分类方法在该领域占据主导地位。然而实际应用场景面临着样本数据较少、模型泛化能力较差的问题,致使基于深度学习的遥感图像场景分类方法实现难度较大,性能大幅下降。针对上述难点,提出了基于注意力机制的小样本遥感图像场景分类方法,设计了一种双分支判别结构进行相似性度量。该方法基于元学习训练策略对数据集进行任务制划分;为最大限度保留遥感图像中的特征分布,对输入图像进行重叠分块;在特征提取网络中引入轻量级注意力模块,降低过拟合风险并保证判别性特征的获取;在EMD(earth mover’s distance)距离的基础上设计添加双分支相似性度量模块,提升分类器的判别能力。实验结果表明,相较于经典小样本学习方法,所提出的小样本遥感图像场景分类方法能够显著提升分类性能。 展开更多
关键词 遥感图像场景分类 小样本学习 元学习 注意力机制 分支判别
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部