期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进Mask RCNN和Kinect的服务机器人物品识别系统 被引量:26
1
作者 石杰 周亚丽 张奇志 《仪器仪表学报》 EI CAS CSCD 北大核心 2019年第4期216-228,共13页
服务机器人在近年来得到了快速的发展,其应用的算法也在不断地更迭,目标检测算法便是其中之一。在保证目标检测精度的前提下,目标检测速度决定着机器人目标物抓取的效率。因此将远距离小目标场景作为测试场景,改进现有网络模型,目的是... 服务机器人在近年来得到了快速的发展,其应用的算法也在不断地更迭,目标检测算法便是其中之一。在保证目标检测精度的前提下,目标检测速度决定着机器人目标物抓取的效率。因此将远距离小目标场景作为测试场景,改进现有网络模型,目的是在保证检测精度的前提下提升检测速度。掩码区域卷积神经网络(Mask RCNN)是目前目标检测领域应用较广的算法,通过对其网络结构研究发现,掩码分支和过多的全连接层会占用大量网络检测时间;同时,Mask RCNN提取到的特征图具有较高的维度,其会占用大量的计算内存,产生大量的计算任务。为此,Mask RCNN进行改进,如去掉掩码分支和多余的全链接层;将头部轻量化区域卷积神经网络(LH-RCNN)引入到Mask RCNN中;调整区域建议网络(RPN)中锚点(Anchor)的比例。最后,本文在带有KinectⅡ的家庭服务机器人平台上对改进的Mask RCNN进行测试,测试结果表明,与原始的Mask RCNN相比,改进的Mask RCNN在保证检测精度的同时,可以大幅提高算法运行的速度,检测时间缩短2倍以上,提高服务机器人目标抓取任务的效率。 展开更多
关键词 服务机器人 物品识别 改进的掩码区域卷积神经网络 头部轻量化掩码区域卷积神经网络 去掉掩码分支
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部