为解决磁屏蔽筒制约原子自旋磁强计灵敏度的问题,通过改进多层磁屏蔽筒轴向系数公式获得磁屏蔽筒参数优化模型,并在仅改变一项参数而其他参数固定的条件下,依据优化模型,利用Matlab软件对各参数对轴向屏蔽系数的影响程度进行仿真.结果表...为解决磁屏蔽筒制约原子自旋磁强计灵敏度的问题,通过改进多层磁屏蔽筒轴向系数公式获得磁屏蔽筒参数优化模型,并在仅改变一项参数而其他参数固定的条件下,依据优化模型,利用Matlab软件对各参数对轴向屏蔽系数的影响程度进行仿真.结果表明:随着最内层筒半径、筒长及径向层间距的增大,轴向屏蔽系数迅速减小;轴向间隙越大,则屏蔽系数越大.根据仿真结果及实际应用需要优化设计磁屏蔽筒参数,并利用Ansoft软件对优化筒和非优化筒的屏蔽效果进行仿真.结果表明,在外界磁场相同的情况下,未优化和经优化设计的磁屏蔽筒屏蔽能效分别约为152.1和158.6 d B.因此,通过参数优化模型可获得体积小、质量轻、成本低、屏蔽性能大的磁屏蔽筒.展开更多
SERF陀螺仪工作在无自旋交换弛豫(SERF)状态下,电子自旋和核子自旋强烈耦合。通过研究电子自旋与核子自旋的耦合方程,分析了泵浦激光的功率和气室温度对SERF陀螺仪磁场补偿的影响,并搭建了SERF陀螺仪实验平台系统进行验证。研究结果表明...SERF陀螺仪工作在无自旋交换弛豫(SERF)状态下,电子自旋和核子自旋强烈耦合。通过研究电子自旋与核子自旋的耦合方程,分析了泵浦激光的功率和气室温度对SERF陀螺仪磁场补偿的影响,并搭建了SERF陀螺仪实验平台系统进行验证。研究结果表明:原子核自旋补偿磁场正比于泵浦激光功率,泵浦激光功率在9.7 m W至105.6 m W的变化范围中,自旋补偿磁场的变化达到8.9 n T;气室温度在107.5℃至149.3℃变化范围中,自旋补偿磁场变化为4.5 n T,无明显的相关性,并且相对于气室温度的变化,补偿磁场对泵浦激光功率变化更加敏感。展开更多
文摘为解决磁屏蔽筒制约原子自旋磁强计灵敏度的问题,通过改进多层磁屏蔽筒轴向系数公式获得磁屏蔽筒参数优化模型,并在仅改变一项参数而其他参数固定的条件下,依据优化模型,利用Matlab软件对各参数对轴向屏蔽系数的影响程度进行仿真.结果表明:随着最内层筒半径、筒长及径向层间距的增大,轴向屏蔽系数迅速减小;轴向间隙越大,则屏蔽系数越大.根据仿真结果及实际应用需要优化设计磁屏蔽筒参数,并利用Ansoft软件对优化筒和非优化筒的屏蔽效果进行仿真.结果表明,在外界磁场相同的情况下,未优化和经优化设计的磁屏蔽筒屏蔽能效分别约为152.1和158.6 d B.因此,通过参数优化模型可获得体积小、质量轻、成本低、屏蔽性能大的磁屏蔽筒.
文摘SERF陀螺仪工作在无自旋交换弛豫(SERF)状态下,电子自旋和核子自旋强烈耦合。通过研究电子自旋与核子自旋的耦合方程,分析了泵浦激光的功率和气室温度对SERF陀螺仪磁场补偿的影响,并搭建了SERF陀螺仪实验平台系统进行验证。研究结果表明:原子核自旋补偿磁场正比于泵浦激光功率,泵浦激光功率在9.7 m W至105.6 m W的变化范围中,自旋补偿磁场的变化达到8.9 n T;气室温度在107.5℃至149.3℃变化范围中,自旋补偿磁场变化为4.5 n T,无明显的相关性,并且相对于气室温度的变化,补偿磁场对泵浦激光功率变化更加敏感。