We propose a scheme for generation of SU(2) coherent states for an atomic ensemble and a cavity mode. In the scheme a collection of two-level atoms resonantly interact with a single-mode quantized field. Under certa...We propose a scheme for generation of SU(2) coherent states for an atomic ensemble and a cavity mode. In the scheme a collection of two-level atoms resonantly interact with a single-mode quantized field. Under certain conditions, the system can evolve from a Fock state to a highly entangled SU(2) coherent state. The operation speed increases as the number of atoms increases, which is important in view of deeoherence.展开更多
We study a special two-atom entanglement case in assumed cavity QED experiment in which only one atom effectively exchanges a single photon with a cavity mode. We compute two-atom entanglement under position-dependent...We study a special two-atom entanglement case in assumed cavity QED experiment in which only one atom effectively exchanges a single photon with a cavity mode. We compute two-atom entanglement under position-dependent atomic resonant dipole-dipole interaction (RDDI) for large interatomic separation limit. We show that the RDDI, even t, hat which is much smaller than the maximal atomic Rabi frequency, can induce distinct diatom entanglement. The peak entanglement reaches a maximum when RDDI strength can compare with the Rabi frequency of an atom.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.10674025the Doctoral Foundation of the Ministry of Education of China under Grant No.20070386002
文摘We propose a scheme for generation of SU(2) coherent states for an atomic ensemble and a cavity mode. In the scheme a collection of two-level atoms resonantly interact with a single-mode quantized field. Under certain conditions, the system can evolve from a Fock state to a highly entangled SU(2) coherent state. The operation speed increases as the number of atoms increases, which is important in view of deeoherence.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10347103, 10305002, and 60472017
文摘We study a special two-atom entanglement case in assumed cavity QED experiment in which only one atom effectively exchanges a single photon with a cavity mode. We compute two-atom entanglement under position-dependent atomic resonant dipole-dipole interaction (RDDI) for large interatomic separation limit. We show that the RDDI, even t, hat which is much smaller than the maximal atomic Rabi frequency, can induce distinct diatom entanglement. The peak entanglement reaches a maximum when RDDI strength can compare with the Rabi frequency of an atom.