期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于改进卷积神经网络的多视角人脸表情识别 被引量:21
1
作者 钱勇生 邵洁 +3 位作者 季欣欣 李晓瑞 莫晨 程其玉 《计算机工程与应用》 CSCD 北大核心 2018年第24期12-19,共8页
人脸表情识别是计算机视觉领域的研究热点之一。针对自然状态下的人脸存在多视角变化、脸部信息缺失等问题,提出了一种基于MVFE-LightNet(Multi-View Facial Expression Lightweight Network)的多视角人脸表情识别方法。首先,在残差网... 人脸表情识别是计算机视觉领域的研究热点之一。针对自然状态下的人脸存在多视角变化、脸部信息缺失等问题,提出了一种基于MVFE-LightNet(Multi-View Facial Expression Lightweight Network)的多视角人脸表情识别方法。首先,在残差网络的基础上设计卷积网络提取不同视角下的表情特征,引入深度可分离卷积来减少网络参数。其次,嵌入压缩和奖惩网络模块学习特征权重,利用特征重新标定方式提高网络表示能力,并通过加入空间金字塔池化增强网络的鲁棒性。最后,为了进一步优化识别结果,采用AdamW(Adam with Weight decay)优化方法使网络模型加速收敛。在RaFD、BU-3DFE和Fer2013表情库上的实验表明,该方法具有较高的识别率,且减少网络计算时间。 展开更多
关键词 多视角人脸表情识别 MVFE—LightNet 残差网络 深度可分离卷积 压缩奖惩网络模块 空间金字塔池化
下载PDF
基于LSTM-Attention网络的短期风电功率预测 被引量:14
2
作者 钱勇生 邵洁 +3 位作者 季欣欣 李晓瑞 莫晨 程其玉 《电机与控制应用》 2019年第9期95-100,共6页
提出一种基于LSTM-Attention网络的短期风电功率预测方法。首先,使用LSTM网络对数值天气预测(NWP)数据的特征信息进行提取,同时采用注意力机制有效分析了模型输入与输出的相关性,从而获取了更多重要时间的整体特征;其次,使用卷积神经网... 提出一种基于LSTM-Attention网络的短期风电功率预测方法。首先,使用LSTM网络对数值天气预测(NWP)数据的特征信息进行提取,同时采用注意力机制有效分析了模型输入与输出的相关性,从而获取了更多重要时间的整体特征;其次,使用卷积神经网络(CNN)提取NWP数据的局部特征,并引入压缩和奖惩网络(SE)模块学习特征权重,利用特征重新标定方式提高网络表示能力;最后,将局部特征和整体特征进行特征融合,通过分类器输出分类结果。利用NOAA提供的美国加利福尼亚州某风电场的数据进行案例分析,证明了所提方法的有效性。试验结果表明,与BP神经网络、自回归积分滑动平均模型(ARIMA)模型和LSTM模型相比,LSTM-Attention模型具有更高的预测精度,证明了该方法的有效性。 展开更多
关键词 风电功率预测 LSTM 卷积神经网络 压缩奖惩网络模块 注意力机制
下载PDF
基于注意力机制和混合网络的小群体情绪识别 被引量:5
3
作者 季欣欣 邵洁 钱勇生 《计算机工程与设计》 北大核心 2020年第6期1683-1688,共6页
针对自然状态下小群体图像的情绪分类,提出基于面部、场景和骨架3种视觉线索的混合深度网络,分别利用3类卷积神经网络(convolutional neural networks,CNN)分支独立学习,通过决策融合获得最终的情绪分类。其中面部CNN通过注意力机制学... 针对自然状态下小群体图像的情绪分类,提出基于面部、场景和骨架3种视觉线索的混合深度网络,分别利用3类卷积神经网络(convolutional neural networks,CNN)分支独立学习,通过决策融合获得最终的情绪分类。其中面部CNN通过注意力机制学习不同人脸的权重,获得整张图片关于人脸的特征表示,利用large-margin softmax(L-softmax)损失函数进行判别性学习;使用先进的姿势估计方法OpenPose获得图像中所有人体骨架,作为基于骨架卷积神经网络的输入。考虑图片的场景信息,将整张图片作为基于场景CNN的输入。实验结果表明,改进模型对自然状态下3种类型的小群体情绪识别鲁棒,取得了较高的准确率。 展开更多
关键词 小群体情绪识别 场景理解 混合网络 注意力机制 大边缘损失函数 压缩奖惩网络模块
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部