当功率达到吉瓦级时,基于模块化多电平变流器(modular multilevel converter,MMC)的海上风力发电输电系统的庞大的体积和巨大的重量极大地增加了海上平台建造难度和成本。为此,提出了一种基于全桥型模块化多电平变流器(full-bridge modu...当功率达到吉瓦级时,基于模块化多电平变流器(modular multilevel converter,MMC)的海上风力发电输电系统的庞大的体积和巨大的重量极大地增加了海上平台建造难度和成本。为此,提出了一种基于全桥型模块化多电平变流器(full-bridge modular multilevel converter,FB-MMC)和12脉波二极管整流单元(diode rectifier unit,DRU)的直流侧串联、交流侧并联混合整流阀拓扑(series DC parallel AC hybrid rectifier valve,SDCPAC-HV)。该拓扑中,MMC维持海上风电场汇集母线(point of common coupling,PCC)电压,DRU单元在此电压下分担部分输送功率,各并网逆变器采用传统PQ控制模式。首先,探讨了为了维持PCC电压,MMC直流电压占发送阀总电压的比例(即MMC直流电压占比)与MMC调制比之间的关系。然后,分析了MMC无功功率、DRU无功功率和风电场无功功率的平衡问题。同时,给出了正常工况下MMC的控制策略以及直流短路故障和PCC母线短路故障恢复时的控制策略。最后,通过PSCAD/EMTDC电磁暂态仿真软件搭建了完整的海上风力发电系统仿真模型,验证了所提拓扑及其控制策略的正确性。展开更多
文摘当功率达到吉瓦级时,基于模块化多电平变流器(modular multilevel converter,MMC)的海上风力发电输电系统的庞大的体积和巨大的重量极大地增加了海上平台建造难度和成本。为此,提出了一种基于全桥型模块化多电平变流器(full-bridge modular multilevel converter,FB-MMC)和12脉波二极管整流单元(diode rectifier unit,DRU)的直流侧串联、交流侧并联混合整流阀拓扑(series DC parallel AC hybrid rectifier valve,SDCPAC-HV)。该拓扑中,MMC维持海上风电场汇集母线(point of common coupling,PCC)电压,DRU单元在此电压下分担部分输送功率,各并网逆变器采用传统PQ控制模式。首先,探讨了为了维持PCC电压,MMC直流电压占发送阀总电压的比例(即MMC直流电压占比)与MMC调制比之间的关系。然后,分析了MMC无功功率、DRU无功功率和风电场无功功率的平衡问题。同时,给出了正常工况下MMC的控制策略以及直流短路故障和PCC母线短路故障恢复时的控制策略。最后,通过PSCAD/EMTDC电磁暂态仿真软件搭建了完整的海上风力发电系统仿真模型,验证了所提拓扑及其控制策略的正确性。