期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
嵌入式神经网络加速器及SoC芯片
被引量:
7
1
作者
易冬柏
陈恒
何乐年
《仪器仪表学报》
EI
CAS
CSCD
北大核心
2021年第7期155-163,共9页
为了提高人工智能加速器的运算效率和功耗效率,提出了一种新的卷积神经网络(CNN)加速器结构,并实现了神经网络存算一体的方法。首先,设计出一种神经网络架构,其具有高度并行计算以及乘加器(MAC)单元高效运行的特性。其次,为了降低功耗...
为了提高人工智能加速器的运算效率和功耗效率,提出了一种新的卷积神经网络(CNN)加速器结构,并实现了神经网络存算一体的方法。首先,设计出一种神经网络架构,其具有高度并行计算以及乘加器(MAC)单元高效运行的特性。其次,为了降低功耗和面积,采用了对称的静态随机存储器(SRAM)阵列和可调数据流向结构,实现多层网络在SRAM中高效计算,减少了访问外部存储器次数,降低了功耗,提高运算效率。通过中芯国际40 nm工艺,完成了系统芯片(SoC)设计、流片与测试。结果表明运算速度在500 MHz下,算力可达288 GOPS;全速运行功耗89.4 mW;面积1.514 mm^(2);算力功耗比3.22 TOPS/W;40 nm算力面积比为95.1 GOPS/mm^(2)。与已有文献的相比,算力功耗至少提升4.54%,算力面积至少提升134%,对于嵌入式场景应用较适合。
展开更多
关键词
人工智能
加速器
卷积
神经
网络
边缘侧
卷积
神经
处理器
下载PDF
职称材料
题名
嵌入式神经网络加速器及SoC芯片
被引量:
7
1
作者
易冬柏
陈恒
何乐年
机构
浙江大学信息与电子工程学院
珠海零边界集成电路有限公司
出处
《仪器仪表学报》
EI
CAS
CSCD
北大核心
2021年第7期155-163,共9页
文摘
为了提高人工智能加速器的运算效率和功耗效率,提出了一种新的卷积神经网络(CNN)加速器结构,并实现了神经网络存算一体的方法。首先,设计出一种神经网络架构,其具有高度并行计算以及乘加器(MAC)单元高效运行的特性。其次,为了降低功耗和面积,采用了对称的静态随机存储器(SRAM)阵列和可调数据流向结构,实现多层网络在SRAM中高效计算,减少了访问外部存储器次数,降低了功耗,提高运算效率。通过中芯国际40 nm工艺,完成了系统芯片(SoC)设计、流片与测试。结果表明运算速度在500 MHz下,算力可达288 GOPS;全速运行功耗89.4 mW;面积1.514 mm^(2);算力功耗比3.22 TOPS/W;40 nm算力面积比为95.1 GOPS/mm^(2)。与已有文献的相比,算力功耗至少提升4.54%,算力面积至少提升134%,对于嵌入式场景应用较适合。
关键词
人工智能
加速器
卷积
神经
网络
边缘侧
卷积
神经
处理器
Keywords
artificial Intelligence
accelerator
convolutional neural networks
edge
convolutional neural processor
分类号
TH166 [机械工程—机械制造及自动化]
TN47 [电子电信—微电子学与固体电子学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
嵌入式神经网络加速器及SoC芯片
易冬柏
陈恒
何乐年
《仪器仪表学报》
EI
CAS
CSCD
北大核心
2021
7
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部