期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
基于深层卷积残差网络集成的黑色素瘤分类方法 被引量:8
1
作者 胡海根 孔祥勇 +2 位作者 周乾伟 管秋 陈胜勇 《计算机科学》 CSCD 北大核心 2019年第5期247-253,共7页
针对黑色素瘤分类识别任务中存在对比度低、肉眼难以区分、信息干扰大、数据量偏少以及数据不均衡等诸多问题,文中提出了一种基于掩盖的数据增强与深度卷积残差网络相结合的集成分类方法。首先根据皮肤病图像的特点,在前人数据增强研究... 针对黑色素瘤分类识别任务中存在对比度低、肉眼难以区分、信息干扰大、数据量偏少以及数据不均衡等诸多问题,文中提出了一种基于掩盖的数据增强与深度卷积残差网络相结合的集成分类方法。首先根据皮肤病图像的特点,在前人数据增强研究的基础上,提出了两种基于掩盖训练图像部分区域的数据增强方式;其次以这两种数据增强方式为基础,采用深度卷积残差50层(ResNet-50)网络进行特征提取;然后以提取到的特征来构建两个具有一定差异性的分类结构模型,并对其进行集成;最后以国际皮肤影像协作组织(ISIC)2016挑战赛所公布的皮肤病图像数据集为对象,通过一系列实验对提出的方法进行了验证测试。实验结果表明,所提出的集成分类结构模型能弥补单一卷积残差网络在黑色素瘤分类任务中的缺陷,该模型能够在训练样本较少的皮肤病数据集上取得较好的分类结果,多项评估指标均优于ISIC2016挑战赛的前5名。 展开更多
关键词 黑色素瘤 数据增强 卷积残差网络 集成学习
下载PDF
数据增广和主动学习在波阻抗反演中的应用 被引量:8
2
作者 伊小蝶 吴帮玉 +1 位作者 孟德林 曹相湧 《石油地球物理勘探》 EI CSCD 北大核心 2021年第4期707-715,I0008,共10页
在实际应用中,深度卷积网络以大量数据驱动模型进行网络训练,以获得地震数据与阻抗之间的映射关系,但需大量合成数据对网络训练后,再应用少量实际数据对网络进行迁移学习。为此,提出了一种基于数据增广和主动学习的地震波阻抗反演方法... 在实际应用中,深度卷积网络以大量数据驱动模型进行网络训练,以获得地震数据与阻抗之间的映射关系,但需大量合成数据对网络训练后,再应用少量实际数据对网络进行迁移学习。为此,提出了一种基于数据增广和主动学习的地震波阻抗反演方法。数据增广首先通过同频率重采样对单道原波阻抗数据进行增广,再求取增广后的反射系数和随机核,最后计算增广后的地震数据。将增广后的地震和波阻抗数据作为训练集,结合主动学习思想选择最大误差样本对网络进行迭代训练。该方法不仅可以避免地震子波估计,而且能用少量的标签数据训练出预测精度更高的网络。Marmousi 2模型测试结果表明,该方法仅需十分之一标签数据和迭代次数就能达到与随机迭代训练方法相近的预测精度,且预测误差在剖面上分布更均匀。 展开更多
关键词 波阻抗反演 卷积残差网络 数据增广 深度学习 主动学习
下载PDF
改进的RDN灰度图像超分辨率重建方法 被引量:3
3
作者 魏子康 刘云清(指导) 《红外与激光工程》 EI CSCD 北大核心 2020年第S01期160-167,共8页
针对残差算法的残差网络超分辨率重建问题,提出了改进的残差计算的深度复合残差网络模型。在此研究实验中,改进了原有的残差块,能够充分利用到残差块内部的所有卷积层特征信息,提高生成图像的质量;设置了双层复合结构,加深了模型结构的... 针对残差算法的残差网络超分辨率重建问题,提出了改进的残差计算的深度复合残差网络模型。在此研究实验中,改进了原有的残差块,能够充分利用到残差块内部的所有卷积层特征信息,提高生成图像的质量;设置了双层复合结构,加深了模型结构的深度,能够强化模型对图像的特征提取,可以提取更多的图像特征;采用迁移学习的方法,在深度网络结构中通过迁移学习增强图像特征信息,使得该模型性能更稳定。通过天宫一号灰度图像的应用实验表明,该研究提出的改进的深度密集残差网络在天宫一号灰度图像超分辨率重建中表现良好,在卫星图像领域具有应用价值和研究意义。 展开更多
关键词 灰度图像 卷积残差网络 超分辨率重建
下载PDF
基于深层卷积残差网络的航拍图建筑物精确分割方法
4
作者 许华杰 张晨强 苏国韶 《计算机科学》 CSCD 北大核心 2021年第8期169-174,共6页
针对建筑物3D建模场景下所需的建筑物主体轮廓俯视平面图获取成本较高、航拍图建筑物的分割精度低、建筑物屋顶存在干扰物影响分割等问题,文中提出了一种将5个点的位置表示为热图作为网络额外输入通道的基于深层残差网络的航拍图建筑物... 针对建筑物3D建模场景下所需的建筑物主体轮廓俯视平面图获取成本较高、航拍图建筑物的分割精度低、建筑物屋顶存在干扰物影响分割等问题,文中提出了一种将5个点的位置表示为热图作为网络额外输入通道的基于深层残差网络的航拍图建筑物精确分割方法,该方法在航拍图建筑物的精确分割任务中取得了比较好的分割效果。实验结果表明,该方法具有比传统半自动分割方法Grabcut更高的分割精度和分割效率;具有比DEXTR方法更好的鲁棒性和抗干扰性。该方法可以为建筑物3D重建任务提供高精度的建筑物俯视轮廓图和建筑物顶部图片,还可以在航拍图建筑物数据集的制作过程中,作为一种准确和有效的掩码注释工具或半自动轮廓标注工具,以提高数据集的标注效率。 展开更多
关键词 卷积残差网络 图像分割 航拍图 3D建模 热图
下载PDF
基于深浅特征融合的深度卷积残差网络的脑电情绪识别模型 被引量:6
5
作者 周如双 赵慧琳 +6 位作者 林玮玥 胡婉柔 张力 黄淦 李琳玲 张治国 梁臻 《中国生物医学工程学报》 CAS CSCD 北大核心 2021年第6期641-652,共12页
基于脑电信号的智能情绪识别系统具有便携性、高时间分辨率、实时性等特点,能够在健康、娱乐、教育等多个领域实现情绪监控与调节的应用。但由于脑电信号的非平稳性和个体差异性,传统分类器难以深入提取脑电信号中潜在的与情绪语义相关... 基于脑电信号的智能情绪识别系统具有便携性、高时间分辨率、实时性等特点,能够在健康、娱乐、教育等多个领域实现情绪监控与调节的应用。但由于脑电信号的非平稳性和个体差异性,传统分类器难以深入提取脑电信号中潜在的与情绪语义相关的特征。为了有效地提取脑电特征,提高脑电-情绪识别的准确性,提出一种新型的基于深浅特征融合的深度卷积残差网络情绪识别模型,主要包括浅层-深层特征提取两个模块和分类模块。首先,通过设计多层不同卷积核的卷积层,以实现浅层时-空特征提取;其次,将所提取的浅层时-空特征输入到双向GRU网络和注意力机制网络,进一步提取得到浅层-深层融合特征;最后,将浅层-深层融合特征输入到全连接层进行分类。使用DEAP数据集中76 800个脑电样本进行基于被试独立的留一交叉验证,在效价和唤醒度的维度上,跨个体、跨试次、跨时间的二分类准确率分别为96.95%和97.22%,比现有同类模型的最优识别性能分别提升3.53%和4.25%。另外,模型的性能也在MAHNOB-HCI和SEED数据集上得到验证。结果表明,提出的模型能有效地提取与情绪语义相关的脑电特征。 展开更多
关键词 脑电信号 情绪识别 深度卷积残差网络 深浅特征融合 双向门控循环单元
下载PDF
基于时序卷积残差网络和鹈鹕优化算法的新能源电网安全稳定控制方法
6
作者 张建新 邱建 +4 位作者 朱煜昆 朱益华 杨欢欢 徐光虎 涂亮 《可再生能源》 CAS CSCD 北大核心 2024年第6期845-852,共8页
随着“双碳”目标的推进,随机波动的新能源接入电网的规模和容量日益提升,严重影响电网的安全稳定运行。针对大干扰故障电压稳定控制问题,文章提出了一种基于时序卷积残差网络和鹈鹕优化算法的新能源电网电压安全稳定控制策略。首先,利... 随着“双碳”目标的推进,随机波动的新能源接入电网的规模和容量日益提升,严重影响电网的安全稳定运行。针对大干扰故障电压稳定控制问题,文章提出了一种基于时序卷积残差网络和鹈鹕优化算法的新能源电网电压安全稳定控制策略。首先,利用时序卷积信息损失少、感受野宽以及残差网络深层特征提取能力强的优势,构建基于时序卷积残差网络的电压稳定预测模型,映射出敏感节点电压时序特征和电压稳定之间的关系;其次,构建电压稳定控制模型,利用鹈鹕优化算法收敛速度快、搜索能力强的优势求解控制模型,得出最佳切机和切负荷动作措施;最后,进行了仿真验证。验证结果表明,所提方法提高了新能源电网电压安全稳定预测的准确性,通过最佳的电压稳定控制策略提高了电网故障后的安全稳定运行水平。 展开更多
关键词 新能源 大干扰故障 时序卷积残差网络 鹈鹕优化算法 安全稳定控制
下载PDF
基于深度学习的水平非均匀蒸发波导反演方法研究
7
作者 吴佳静 张金鹏 +1 位作者 张玉石 魏志强 《电波科学学报》 CSCD 北大核心 2023年第4期665-672,共8页
水平非均匀蒸发波导是一种异常的大气结构,在海上出现的概率高,对海上低空雷达具有较强的电磁捕获能力.然而,海上低空蒸发波导修正折射率剖面反演过程中由于水平方向剖面参数的非均匀变化,导致在实际的海洋环境中产生较大的反演复杂度... 水平非均匀蒸发波导是一种异常的大气结构,在海上出现的概率高,对海上低空雷达具有较强的电磁捕获能力.然而,海上低空蒸发波导修正折射率剖面反演过程中由于水平方向剖面参数的非均匀变化,导致在实际的海洋环境中产生较大的反演复杂度和误差.为解决上述问题,首先提出了一维残差扩张因果卷积自编码器(one-dimensional residual dilated causal convolutional autoencoder,1D-RDCAE)网络实现低自由度的非均匀蒸发波导剖面建模,其次提出了多尺度卷积残差网络(multi-scale convolutional attention residual network,MSCA-ResNet)框架来实现水平非均匀蒸发波导剖面反演.为验证建模模型的有效性,在模拟海杂波功率数据集上验证降维模型的有效性,实验结果表明,基于1D-RDCAE比基于主分量分析法、堆栈自动编码器和一维卷积自动编码器降维重构后更接近原始数据,并且在模型训练过程中收敛速度更快.为了验证反演模型的有效性,在模拟的海杂波和实测海杂波数据上进行了测试,结果表明基于仿真海杂波和实测海杂波数据分别可实现蒸发波导高度反演准确率为96.98%和91.25%,优于目前典型的反演方法.本文提出的基于深度学习的水平非均匀蒸发波导反演方法具有模型反演效率高、模型复杂度低、反演误差小的特点,为海上反常传播环境实时高精度认知提供了新技术. 展开更多
关键词 海杂波 蒸发波导 水平非均匀 深度学习 反演 主分量分析(PCA)法 一维残差扩张因果卷积自编码器 多尺度卷积残差网络
下载PDF
基于3D卷积残差网络的人体动作识别算法 被引量:4
8
作者 范银行 赵海峰 张少杰 《计算机应用研究》 CSCD 北大核心 2020年第S02期300-301,304,共3页
针对3D卷积神经网络在卷积过程中产生较大的参数量和计算量的问题,提出了一种结合3D卷积残差网络和轻量级多尺度卷积模块的人体动作识别算法。该轻量级多尺度卷积模块首先将中间特征图分割为若干子图;然后将每个子图经3D卷积后的特征图... 针对3D卷积神经网络在卷积过程中产生较大的参数量和计算量的问题,提出了一种结合3D卷积残差网络和轻量级多尺度卷积模块的人体动作识别算法。该轻量级多尺度卷积模块首先将中间特征图分割为若干子图;然后将每个子图经3D卷积后的特征图融合,提取目标的多尺度特征;再对多尺度特征图上的每个通道赋予不同权值;最后使用softmax分类器进行分类。在UCF-101数据集上的实验结果表明,相比较其他3D卷积神经网络算法,该算法不仅加快了模型收敛速度,而且进一步提高了动作识别率。 展开更多
关键词 人体动作识别 3D卷积残差网络 轻量级多尺度卷积模块 多尺度信息
下载PDF
基于深度学习的航空发动机磨损部位识别方法
9
作者 苗慧慧 曹桂松 +3 位作者 孙智君 康玉祥 马佳丽 陈果 《润滑与密封》 CAS CSCD 北大核心 2023年第4期136-144,共9页
针对航空发动机润滑系统中摩擦副部件复杂、磨损颗粒能谱监测元素众多,靠人工经验难于进行磨损部位精确识别的问题,提出一种基于深度学习的航空发动机润滑系统磨损部位识别方法。该方法应用一维卷积核为计算单元,搭建一维卷积残差网络... 针对航空发动机润滑系统中摩擦副部件复杂、磨损颗粒能谱监测元素众多,靠人工经验难于进行磨损部位精确识别的问题,提出一种基于深度学习的航空发动机润滑系统磨损部位识别方法。该方法应用一维卷积核为计算单元,搭建一维卷积残差网络模型。以航空发动机润滑油中磨损颗粒能谱分析数据为输入,采用所搭建的一维卷积残差网络模型实现对能谱数据的特征提取以及航空发动机磨损部位的定位识别;以某型航空发动机润滑油中磨损颗粒实测能谱数据验证该方法的有效性,并和Resnet18、Resnet34、CNN等网络模型进行对比验证。结果表明,所提方法对航空发动机磨损部位的识别精度达到95%以上。为了验证模型的鲁棒性和泛化能力,在真实的某型航空发动机能谱数据基础上,对含氧数据和噪声数据分别进行测试,进一步说明该模型用于对磨损定位识别的有效性,具备实际应用的可行性。 展开更多
关键词 航空发动机 能谱分析 磨损 一维卷积残差网络 深度学习
下载PDF
基于复数卷积残差网络的雷达杂波幅度统计模型分类 被引量:2
10
作者 张良 杨威 +2 位作者 李玮杰 杨小琪 刘永祥 《系统工程与电子技术》 EI CSCD 北大核心 2021年第11期3086-3097,共12页
雷达杂波幅度统计模型分类是进行杂波背景下检测目标的重要步骤。雷达杂波原始数据通常是复数数据,但现有杂波幅度统计模型分类研究都是在实数数据上完成的。复数数据同时包含幅度和相位信息,更丰富的信息量有助于雷达杂波幅度统计模型... 雷达杂波幅度统计模型分类是进行杂波背景下检测目标的重要步骤。雷达杂波原始数据通常是复数数据,但现有杂波幅度统计模型分类研究都是在实数数据上完成的。复数数据同时包含幅度和相位信息,更丰富的信息量有助于雷达杂波幅度统计模型分类。为此,引入复数神经网络,利用仿真杂波高分辨距离像(high resolution range profile,HRRP)复数数据,对雷达杂波幅度统计模型分类问题进行研究,完成了以下工作:一是为构建复数最大池化层,定义并改进了复数最大池化算法,通过复数卷积神经网络(complex-valued convolutional neural networks,CV-CNN)对杂波幅度统计模型的分类实验,对比了两种复数最大池化算法和复数平均池化算法的分类效果,实验结果表明复数最大池化算法的分类效果更好,分类准确率为97.29%;二是为进一步提高分类准确率,构建了复数卷积残差网络(complex-valued convolution-ResNet,CV-CRN),通过实验对比分析了CV-CRN的性能,实验结果表明,CV-CRN的分类性能优于CV-CNN,分类准确率达到98.84%,并具有较好的鲁棒性。 展开更多
关键词 杂波分类 高分辨距离像 复数卷积残差网络
下载PDF
基于SDP和DG-ResNet的齿轮箱轴承故障诊断研究 被引量:2
11
作者 韩春雷 武兵 +2 位作者 熊晓燕 任俊锜 刘智飞 《机电工程》 CAS 北大核心 2021年第11期1395-1401,共7页
在复杂工况下,齿轮箱轴承运行会产生诸多故障,且各种故障之间相互影响,依靠传统的故障诊断方法难以满足高精度、智能化的故障分类要求,提出了一种结合对称点图像(SDP)算法技术和膨胀分组卷积残差网络(DG-ResNet)的齿轮箱轴承故障诊断方... 在复杂工况下,齿轮箱轴承运行会产生诸多故障,且各种故障之间相互影响,依靠传统的故障诊断方法难以满足高精度、智能化的故障分类要求,提出了一种结合对称点图像(SDP)算法技术和膨胀分组卷积残差网络(DG-ResNet)的齿轮箱轴承故障诊断方法。首先,将一维轴承振动信号数据通过SDP方法转化为二维图像,在不减少原始数据的前提下,图像可以清楚地显示出振动数据的原始特征;然后,将图像作为模型的输入,输入到DG-ResNet神经网络模型中,对图像进行了轴承故障特征的提取和分类,膨胀分组卷积残差块增加了卷积个数和感受野尺寸,可以让网络提取到高阶图像特征,实现了对轴承故障的高精度、智能化分类;最后,将该方法和多种经典卷积神经网络算法,进行了故障诊断准确率的对比。研究结果表明:与多种经典卷积神经网络算法相比,所提方法对轴承故障诊断的准确率远高于其他网络,诊断的平均准确率达到93%,该结果验证了所提方法的有效性;该方法能够对轴承故障进行高效分类,可以用于齿轮箱轴承的实际故障分类。 展开更多
关键词 齿轮箱轴承 故障诊断 对称点图像 膨胀分组卷积残差网络
下载PDF
(2+1)D多时空信息融合模型及在行为识别的应用 被引量:3
12
作者 谈咏东 王永雄 +1 位作者 陈姝意 缪银龙 《信息与控制》 CSCD 北大核心 2019年第6期715-722,共8页
针对常规的卷积神经网络时空感受野尺度单一,难以提取视频中多变的时空信息的问题,利用(2+1)D模型将时间信息和空间信息在一定程度上解耦的特性,提出了(2+1)D多时空信息融合的卷积残差神经网络,并用于人体行为识别.该模型以3×3空... 针对常规的卷积神经网络时空感受野尺度单一,难以提取视频中多变的时空信息的问题,利用(2+1)D模型将时间信息和空间信息在一定程度上解耦的特性,提出了(2+1)D多时空信息融合的卷积残差神经网络,并用于人体行为识别.该模型以3×3空间感受野为主,1×1空间感受野为辅,与3种不同时域感受野交叉组合构建了6种不同尺度的时空感受野.提出的多时空感受野融合模型能够同时获取不同尺度的时空信息,提取更丰富的人体行为特征,因此能够更有效识别不同时间周期、不同动作幅度的人体行为.另外提出了一种视频时序扩充方法,该方法能够同时在空间信息和时间序列扩充视频数据集,丰富训练样本.提出的方法在公共视频人体行为数据集UCF101和HMDB51上子视频的识别率超过或接近最新的视频行为识别方法. 展开更多
关键词 时空信息融合 人体行为识别 (2+1)D卷积残差神经网络 感受野 卷积神经网络
原文传递
全卷积多并联残差神经网络 被引量:6
13
作者 李国强 张露 《小型微型计算机系统》 CSCD 北大核心 2020年第1期30-34,共5页
随着人工智能的火热发展,深度学习已经在很多领域占有了一席之地.作为深度学习中一个典型网络--残差神经网络模型自提出之日起就成为了众多研究者的关注点.然而,残差神经网络还有很大的改进空间.为了更好地解决反向传播中梯度减小的问题... 随着人工智能的火热发展,深度学习已经在很多领域占有了一席之地.作为深度学习中一个典型网络--残差神经网络模型自提出之日起就成为了众多研究者的关注点.然而,残差神经网络还有很大的改进空间.为了更好地解决反向传播中梯度减小的问题,本文提出了一种改进的残差神经网络,称为全卷积多并联残差神经网络.在该网络中,每一层的特征信息不仅传输到下一层还输出到最后的平均池化层.为了测试该网络的性能,分别在三个数据集(MNIST,CIFAR-10和CIFAR-100)上对比图像分类的结果.实验结果表明,改进后的全卷积多并联残差神经网络与残差网络相比具有更高的分类准确率和更好的泛化能力. 展开更多
关键词 深度学习 残差神经网络 卷积多并联残差神经网络 图像分类
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部