期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进Mask R-CNN的卫星目标部位检测方法
被引量:
2
1
作者
杨钦宁
佘浩平
庞羽佳
《计算机测量与控制》
2021年第11期12-17,共6页
针对卫星部件维修更换、燃料加注、废弃卫星回收等空间在轨服务中需解决的目标卫星部位检测问题,在Mask R-CNN的基础上,改进其主干网络结构并缩减分类回归、Mask分支通道数,提出了一种改进的实例分割网络模型Ring-Engine-Mask R-CNN,使...
针对卫星部件维修更换、燃料加注、废弃卫星回收等空间在轨服务中需解决的目标卫星部位检测问题,在Mask R-CNN的基础上,改进其主干网络结构并缩减分类回归、Mask分支通道数,提出了一种改进的实例分割网络模型Ring-Engine-Mask R-CNN,使用实物模型图像和3ds Max生成的仿真图像建立了专用数据集,给出了一种基于深度学习的卫星目标部位检测方法;实验结果表明,该方法能较好的完成卫星星箭对接环和远地点发动机喷管两种目标部位的检测分割,相较于传统的网络模型,在缩小了模型规模的同时,具有更高精度和更快的检测速度。
展开更多
关键词
卫星
目标
部位
检测
深度学习
图像数据集
卷积神经网络
Mask
R-CNN
下载PDF
职称材料
题名
基于改进Mask R-CNN的卫星目标部位检测方法
被引量:
2
1
作者
杨钦宁
佘浩平
庞羽佳
机构
北京理工大学宇航学院
中国空间技术研究院钱学森空间技术实验室
出处
《计算机测量与控制》
2021年第11期12-17,共6页
文摘
针对卫星部件维修更换、燃料加注、废弃卫星回收等空间在轨服务中需解决的目标卫星部位检测问题,在Mask R-CNN的基础上,改进其主干网络结构并缩减分类回归、Mask分支通道数,提出了一种改进的实例分割网络模型Ring-Engine-Mask R-CNN,使用实物模型图像和3ds Max生成的仿真图像建立了专用数据集,给出了一种基于深度学习的卫星目标部位检测方法;实验结果表明,该方法能较好的完成卫星星箭对接环和远地点发动机喷管两种目标部位的检测分割,相较于传统的网络模型,在缩小了模型规模的同时,具有更高精度和更快的检测速度。
关键词
卫星
目标
部位
检测
深度学习
图像数据集
卷积神经网络
Mask
R-CNN
Keywords
satellite target part detection
deep learning
image dataset
R-CNN
Mask R-CNN
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
V556.5 [自动化与计算机技术—控制科学与工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进Mask R-CNN的卫星目标部位检测方法
杨钦宁
佘浩平
庞羽佳
《计算机测量与控制》
2021
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部