期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于语义分割和融合残差U⁃Net的单视光学遥感影像三维重建方法
1
作者 黄桦 朱宇昕 +3 位作者 章历 陈志达 张乙志 王博 《数据采集与处理》 CSCD 北大核心 2024年第2期348-360,共13页
从单视遥感图像进行三维重建本身是一个解不唯一的非适定问题,往往需要大量的人工经验来补充缺失信息以构建完整三维模型。为了解决这一问题,提出了一种基于语义分割和融合残差U-Net的单视遥感影像三维重建方法。该方法包括语义分割和... 从单视遥感图像进行三维重建本身是一个解不唯一的非适定问题,往往需要大量的人工经验来补充缺失信息以构建完整三维模型。为了解决这一问题,提出了一种基于语义分割和融合残差U-Net的单视遥感影像三维重建方法。该方法包括语义分割和单视遥感影像高度估计两个阶段。语义分割阶段使用U-Net确定地物属性,在此基础上改进U-Net对遥感影像进行高度估计,并联合语义特征进行锚定高度回归以提高重建精度。针对改进U-Net,通过嵌入不同数量与通道的残差块,强化编码器的特征提取能力,并修改解码器输出层使其适应于高度回归任务,从而实现逐像素预测遥感影像的数字表面模型(Digital surface model,DSM)高度值。在公开的US3D数据集上得到了均方根误差(Root mean square error,RMSE)为2.751 m、平均绝对误差(Mean absolute error,MAE)为1.446 m的结果,重建结果均优于其余网络,证实该方法实现了基于单视遥感影像的三维估计,能够重建地物的分布结构。 展开更多
关键词 语义分割 深度残差学习 融合残差U-Net 三维重建
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部