The effective index of the cladding fundamental space-filling mode in photonic crystal fiber (PCF) is simulated by the effective index method. The variation of the effective index with the structure parameters of the ...The effective index of the cladding fundamental space-filling mode in photonic crystal fiber (PCF) is simulated by the effective index method. The variation of the effective index with the structure parameters of the fiber is achieved. For the first time, the relations of the V parameter of Yb3+-doped PCF with the refractive index of core and the structure parameters of the fiber are provided. the single-mode characteristics of large-core Yb3+-doped photonic crystal fibers with 7 and 19 missing air holes in the core are analyzed. The large-core single-mode Yb3+-doped photonic crystal fibers with core diameters of 50 μm, 100 μm and 150 μm are designed. The results provide theory instruction for the design and fabrication of fiber.展开更多
基金supported by the National Natural Science Foundation of China (Nos.60637010 and 60978028)the National Basic Research Program of China (No.2010CB327604)+1 种基金the Young Scientists Fund of the Natural Science Foundation of Hebei Province (Nos.F2010001313 andF2010001291)the Science and Technology Development Program of Qinhuangdao of Hebei Province (No.201001A076)
文摘The effective index of the cladding fundamental space-filling mode in photonic crystal fiber (PCF) is simulated by the effective index method. The variation of the effective index with the structure parameters of the fiber is achieved. For the first time, the relations of the V parameter of Yb3+-doped PCF with the refractive index of core and the structure parameters of the fiber are provided. the single-mode characteristics of large-core Yb3+-doped photonic crystal fibers with 7 and 19 missing air holes in the core are analyzed. The large-core single-mode Yb3+-doped photonic crystal fibers with core diameters of 50 μm, 100 μm and 150 μm are designed. The results provide theory instruction for the design and fabrication of fiber.