期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于神经网络CA/OS-CFAR检测方法 被引量:5
1
作者 王皓 衣同胜 《兵工自动化》 2018年第2期15-18,共4页
在杂波边缘和多目标的复杂环境下,建立性能稳定的自适应检测技术是提高恒虚警率处理能力的关键。针对单元平均恒虚警检测(cell averaging-constant false alarm rate)和有序统计量恒虚警检测(ordered statistic-constant false alarm ra... 在杂波边缘和多目标的复杂环境下,建立性能稳定的自适应检测技术是提高恒虚警率处理能力的关键。针对单元平均恒虚警检测(cell averaging-constant false alarm rate)和有序统计量恒虚警检测(ordered statistic-constant false alarm rate)的优缺点,提出一种基于神经网络的检测方法(cell averaging/ordered statistic-constant false alarm rate)。利用神经网络进行最优检测方法判断,根据选定的检测方法计算出检测阈值。通过训练计算初始阈值,采用神经网络分类并识别输入的类型。将该阈值与CA-CFAR和OS-CFAR计算结果相比较,并选用均匀杂波、多目标和杂波边缘环境的仿真案例进行测试。实验结果表明:该方法可在均值和非均匀的杂波背景中,能有效地进行最优检测方法判断。 展开更多
关键词 转换 神经网络 多层感知器(MLP) 恒虚警率(CFAR) 单元平均数(ca) 有序统计(OS)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部