期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
各向异性扩散问题的一个单元中心型有限体积格式 被引量:2
1
作者 骆龙山 高志明 邬吉明 《工程数学学报》 CSCD 北大核心 2015年第3期359-368,共10页
在辐射流体力学的数值模拟中,扩散算子的高效高精度离散是一个十分重要的问题.本文研究各向异性扩散方程在任意多边形网格上的数值求解问题,我们利用调和平均点和线性精确方法,构造了一个单元中心型有限体积格式.该格式只含有单元中心... 在辐射流体力学的数值模拟中,扩散算子的高效高精度离散是一个十分重要的问题.本文研究各向异性扩散方程在任意多边形网格上的数值求解问题,我们利用调和平均点和线性精确方法,构造了一个单元中心型有限体积格式.该格式只含有单元中心未知量,满足局部守恒条件,有紧凑的计算模板,在结构四边形网格上退化为一个九点格式.由于调和平均点插值算法是一个具有两点模板的二阶保正算法,因此,采用单元边上的调和平均点为插值节点,使得离散格式十分简洁,容易实施.此外,我们在格式构造中仅采用了二、三维网格的共有拓扑关系,使格式容易向三维问题推广,大部分程序代码可实现二、三维公用.我们采用典型的大变形扭曲网格及典型的扩散算例(包括连续和间断的扩散张量)对所提出的新格式进行了测试,数值算例表明,新格式在许多扭曲的多边形网格上具有二阶精度. 展开更多
关键词 扩散方程 任意多边形网格 单元中心有限体积格式 线性精确 调和平均点
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部