期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
注意力机制引导的多模态心脏图像分割
1
作者
杨琬琪
周子奇
郭心娜
《南京师大学报(自然科学版)》
CAS
CSCD
北大核心
2019年第3期27-31,41,共6页
为有效挖掘模态间共享与模态特有的信息,本文提出一种注意力机制引导的半孪生网络,用于分割多模态(MRI与CT)心脏图像.具体地,首先运用循环一致的生成对抗网络(CycleGAN)进行双向的图像生成(即从MRI到CT以及从CT到MRI),这样可以解决模态...
为有效挖掘模态间共享与模态特有的信息,本文提出一种注意力机制引导的半孪生网络,用于分割多模态(MRI与CT)心脏图像.具体地,首先运用循环一致的生成对抗网络(CycleGAN)进行双向的图像生成(即从MRI到CT以及从CT到MRI),这样可以解决模态间心脏图像不配对的问题;其次,设计一个新的半孪生网络,将原始的CT(或MR)图像及其生成的MR(或CT)图像进行配对并同时输入,先通过两个编码器(encoders)分别学习模态特有的特征,再经过一个跨模态的注意力模块将不同模态的特征进行融合,最后输入一个公共的解码器(decoder)来得到模态共享的特征,用于心脏图像分割.上述学习过程是端到端的方式进行训练.本文将所提方法在真实的CT与MR不配对的心脏图像数据集上进行实验评估,表明所提方法的分割精度超出基准方法.
展开更多
关键词
注意力机制
多模态心脏图像分割
半
孪生
网络
跨模态图像生成
下载PDF
职称材料
题名
注意力机制引导的多模态心脏图像分割
1
作者
杨琬琪
周子奇
郭心娜
机构
南京师范大学计算机科学与技术学院
出处
《南京师大学报(自然科学版)》
CAS
CSCD
北大核心
2019年第3期27-31,41,共6页
基金
国家自然科学基金(61603193,61876087)
文摘
为有效挖掘模态间共享与模态特有的信息,本文提出一种注意力机制引导的半孪生网络,用于分割多模态(MRI与CT)心脏图像.具体地,首先运用循环一致的生成对抗网络(CycleGAN)进行双向的图像生成(即从MRI到CT以及从CT到MRI),这样可以解决模态间心脏图像不配对的问题;其次,设计一个新的半孪生网络,将原始的CT(或MR)图像及其生成的MR(或CT)图像进行配对并同时输入,先通过两个编码器(encoders)分别学习模态特有的特征,再经过一个跨模态的注意力模块将不同模态的特征进行融合,最后输入一个公共的解码器(decoder)来得到模态共享的特征,用于心脏图像分割.上述学习过程是端到端的方式进行训练.本文将所提方法在真实的CT与MR不配对的心脏图像数据集上进行实验评估,表明所提方法的分割精度超出基准方法.
关键词
注意力机制
多模态心脏图像分割
半
孪生
网络
跨模态图像生成
Keywords
attention
multimodal cardiac segmentation
semi-siamese network
cross-modal image generation
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
注意力机制引导的多模态心脏图像分割
杨琬琪
周子奇
郭心娜
《南京师大学报(自然科学版)》
CAS
CSCD
北大核心
2019
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部