期刊文献+
共找到71篇文章
< 1 2 4 >
每页显示 20 50 100
Faster R-CNN模型在车辆检测中的应用 被引量:62
1
作者 王林 张鹤鹤 《计算机应用》 CSCD 北大核心 2018年第3期666-670,共5页
针对传统机器学习方法在车辆检测应用中易受光照、目标尺度和图像质量等因素影响,效率低下且泛化能力较差的问题,提出一种基于改进的较快的基于区域卷积神经网络(R-CNN)模型的车辆检测方法。该方法以Faster R-CNN模型为基础,通过对输入... 针对传统机器学习方法在车辆检测应用中易受光照、目标尺度和图像质量等因素影响,效率低下且泛化能力较差的问题,提出一种基于改进的较快的基于区域卷积神经网络(R-CNN)模型的车辆检测方法。该方法以Faster R-CNN模型为基础,通过对输入图像进行卷积和池化等操作提取车辆特征,结合多尺度训练和难负样本挖掘策略降低复杂环境的影响,利用KITTI数据集对深度神经网络模型进行训练,并采集实际场景中的图像进行测试。仿真实验中,在保证检测时间的情况下,相对原Faster R-CNN算法检测精确度提高了约8%。实验结果表明,所提方法能够自动地提取车辆特征,解决了传统方法提取特征费时费力的问题,同时提高了车辆检测精确度,具有良好的泛化能力和适用范围。 展开更多
关键词 车辆检测 FASTER R-CNN模型 区域建议网络 难负样本挖掘 KITTI数据集
下载PDF
基于Faster RCNN的行人检测方法 被引量:36
2
作者 张汇 杜煜 +3 位作者 宁淑荣 张永华 杨硕 杜晨 《传感器与微系统》 CSCD 2019年第2期147-149,15,共4页
借鉴目标识别领域的快速区域卷积神经网络(Fast RCNN),提出了基于Faster RCNN的行人检测方法,利用CNN提取图像特征,通过聚类和构建区域建议网络(RPN)提取可能含有行人的区域,利用检测网络对目标区域进行判别和分类,并在INRIA数据集中进... 借鉴目标识别领域的快速区域卷积神经网络(Fast RCNN),提出了基于Faster RCNN的行人检测方法,利用CNN提取图像特征,通过聚类和构建区域建议网络(RPN)提取可能含有行人的区域,利用检测网络对目标区域进行判别和分类,并在INRIA数据集中进行了测试验证。实验结果表明:相比基于可变形的组件模型(DPM)的行人检测方法,提出的方法,在测试集上检测准确度达到92. 7%,相比现有的其他方法,其检测效果更好。 展开更多
关键词 快速区域卷积神经网络 区域建议网络 行人检测 深度学习
下载PDF
基于深度学习的木材缺陷图像检测方法 被引量:28
3
作者 程玉柱 顾权 +1 位作者 王众辉 李赵春 《林业机械与木工设备》 2018年第8期33-36,共4页
针对木材活节、虫眼、死节等缺陷,提出一种深度学习的木材缺陷图像检测算法。首先构建训练数据库及测试数据库,同时设定卷积神经网络(CNN)的输入层、中间层、输出层等参数,并利用区域建议网络(RPN)反复训练CNN,然后利用训练好的CNN对测... 针对木材活节、虫眼、死节等缺陷,提出一种深度学习的木材缺陷图像检测算法。首先构建训练数据库及测试数据库,同时设定卷积神经网络(CNN)的输入层、中间层、输出层等参数,并利用区域建议网络(RPN)反复训练CNN,然后利用训练好的CNN对测试图像进行检测,得到缺陷所在的矩形区域。将此区域作为初始分割范围,再利用CV模型进行图像精细分割。试验结果表明,提出的算法目标定位能力强,能很好地提取木材缺陷目标。 展开更多
关键词 深度学习 卷积神经网络 区域建议网络 木材缺陷图像 CV
下载PDF
基于加速区域卷积神经网络的夜间行人检测研究 被引量:25
4
作者 叶国林 孙韶媛 +1 位作者 高凯珺 赵海涛 《激光与光电子学进展》 CSCD 北大核心 2017年第8期117-123,共7页
行人检测是机器人和无人车夜间工作应用中的重要任务之一,采用加速区域卷积神经网络框架实现夜间红外图像中的行人检测,用区域建议网络生成候选区域,无需单独从图像中生成候选区域。区域建议网络和用于分类以及位置精修的卷积网络中,采... 行人检测是机器人和无人车夜间工作应用中的重要任务之一,采用加速区域卷积神经网络框架实现夜间红外图像中的行人检测,用区域建议网络生成候选区域,无需单独从图像中生成候选区域。区域建议网络和用于分类以及位置精修的卷积网络中,采用卷积层参数共享机制,使得该框架具有端到端的优点,因此无需手动选取目标特征,实现了从输入图像直接到行人检测的功能。实验结果表明,与使用传统方法和快速区域卷积神经网络相比,使用加速区域卷积网络框架对红外图像进行行人检测的准确率从68.2%和73.4%提高到了90.9%,检测时间从3.6s/frame和2.3s/frame缩短到了0.04s/frame,达到了实际应用中的实时性要求。 展开更多
关键词 图像处理 红外图像 行人检测 加速区域卷积神经网络 区域建议网络
原文传递
基于Faster-RCNN的快速目标检测算法 被引量:23
5
作者 曹之君 张良 《航天控制》 CSCD 北大核心 2020年第4期49-55,共7页
提出一种快速目标检测算法。在训练时,引入区域数目调节层,实时判断当前训练效果,根据当前训练效果,适当增减候选区域数目,达到节省开销的目的。训练结束,记录最佳候选区域数量。在测试时,候选区域数量选择为最佳候选区域数量。此外,深... 提出一种快速目标检测算法。在训练时,引入区域数目调节层,实时判断当前训练效果,根据当前训练效果,适当增减候选区域数目,达到节省开销的目的。训练结束,记录最佳候选区域数量。在测试时,候选区域数量选择为最佳候选区域数量。此外,深层次的卷积神经网络容易在训练中出现退化现象,引入残差网络能有效抑制该现象。以Resnet50为基础进行改进,重新搭建起58层特征提取网络。实验在PASCAL VOC数据集上进行,较经典网络模型,速率提升了18%,识别率提高了3%。另外针对特定飞行器检测做出改进,诸如多尺度训练和丰富锚点样式。 展开更多
关键词 深度学习 目标检测 残差网络 区域建议网络 区域数目调节层
下载PDF
基于Faster R-CNN的除草机器人杂草识别算法 被引量:22
6
作者 李春明 逯杉婷 +1 位作者 远松灵 王震洲 《中国农机化学报》 北大核心 2019年第12期171-176,共6页
针对当前除草机器人杂草识别定位不准确、实时性差等问题,提出一种基于Faster R-CNN的草坪杂草识别算法。该方法首先使用快速区域卷积神经网络(Faster R-CNN)算法训练初始化模型,然后通过在网络池化层后添加生成对抗网络(GAN)噪声层来... 针对当前除草机器人杂草识别定位不准确、实时性差等问题,提出一种基于Faster R-CNN的草坪杂草识别算法。该方法首先使用快速区域卷积神经网络(Faster R-CNN)算法训练初始化模型,然后通过在网络池化层后添加生成对抗网络(GAN)噪声层来提高网络的鲁棒性。试验结果表明,该种方法在正常拍摄的测试集图片中识别率达到97.05%,在加噪图片测试集的识别率达到95.15%,识别结果均优于传统的机器学习方法。同时,本方法具有识别速度快的特点,可用于实时检测,在园林杂草清理等方面具有应用价值。 展开更多
关键词 杂草识别 深度学习 快速区域卷积神经网络 区域建议网络 生成对抗网络
下载PDF
基于改进Faster R-CNN的小尺度行人检测 被引量:21
7
作者 陈泽 叶学义 +1 位作者 钱丁炜 魏阳洋 《计算机工程》 CAS CSCD 北大核心 2020年第9期226-232,241,共8页
为提高小尺度行人检测的准确性,提出一种基于改进Faster R-CNN的目标检测方法。通过引入基于双线性插值的对齐池化层,避免感兴趣区域池化过程中两次量化操作导致的位置偏差,同时设计基于级联的多层特征融合策略,将具有丰富细节信息的浅... 为提高小尺度行人检测的准确性,提出一种基于改进Faster R-CNN的目标检测方法。通过引入基于双线性插值的对齐池化层,避免感兴趣区域池化过程中两次量化操作导致的位置偏差,同时设计基于级联的多层特征融合策略,将具有丰富细节信息的浅层特征图和具有抽象语义信息的深层特征图进行通道叠加,从而解决小尺度行人在深层特征图中特征信息缺乏的问题。在INRIA和PASCAL VOC2012数据集上的实验结果表明,在小尺度行人检测效率相同的情况下,该方法相比基于Faster R-CNN的检测方法平均精确率均值分别提高了17.58%和23.78%。 展开更多
关键词 小尺度行人检测 区域建议网络 感兴趣区域池化 Faster R-CNN网络 特征融合
下载PDF
基于改进区域卷积神经网络的安全帽佩戴检测 被引量:18
8
作者 徐守坤 王雅如 顾玉宛 《计算机工程与设计》 北大核心 2020年第5期1385-1389,共5页
针对已有的安全帽佩戴检测算法对小尺寸目标和部分遮挡目标检测效果较差的问题,在区域卷积神经网络基础上,做出优化用于安全帽佩戴检测。在原始Faster RCNN的基础上使用多层卷积特征融合技术优化区域建议网络产生候选区域特征图,使用在... 针对已有的安全帽佩戴检测算法对小尺寸目标和部分遮挡目标检测效果较差的问题,在区域卷积神经网络基础上,做出优化用于安全帽佩戴检测。在原始Faster RCNN的基础上使用多层卷积特征融合技术优化区域建议网络产生候选区域特征图,使用在线困难样本挖掘技术训练ROI网络,自动挑选出困难样本使训练更加有效。实验结果表明,相比原始的Faster RCNN算法,所提方法检测精度提高了4.73%,对部分遮挡和小尺寸目标均有较好的检测效果,对环境变化具有更强的适应性。 展开更多
关键词 安全帽佩戴检测 区域卷积神经网络 区域建议网络 多层卷积特征融合 在线困难样本挖掘
下载PDF
基于深度学习方法的海上舰船目标检测 被引量:18
9
作者 袁明新 张丽民 +2 位作者 朱友帅 姜烽 申燚 《舰船科学技术》 北大核心 2019年第1期111-115,124,共6页
为了提高海上无人艇的舰船目标检测精度和速率,本文基于深度学习方法,利用卷积神经网络、区域建议网络及Fast R-CNN检测框架构建了舰船检测系统。该系统通过共享的卷积神经网络提取特征;通过区域建议网络生成候选区域;通过Fast R-CNN框... 为了提高海上无人艇的舰船目标检测精度和速率,本文基于深度学习方法,利用卷积神经网络、区域建议网络及Fast R-CNN检测框架构建了舰船检测系统。该系统通过共享的卷积神经网络提取特征;通过区域建议网络生成候选区域;通过Fast R-CNN框架实现目标检测识别,从而实现端到端的舰船目标检测。实验结果表明,相比于传统机器学习目标检测算法,该舰船检测系统在检测精度及检测速率上均有大幅提高,达到83.79%的准确率及0.05 s/帧的检测速率。本文的舰船检测系统在检测精度及速率上均表现优异,满足了水面无人艇的工作要求。 展开更多
关键词 舰船 目标检测 深度学习 区域建议网络 卷积神经网络
下载PDF
基于融合FPN和Faster R-CNN的行人检测算法 被引量:16
10
作者 王飞 王林 +2 位作者 张儒良 赵勇 王全红 《数据采集与处理》 CSCD 北大核心 2019年第3期530-537,共8页
针对多尺度行人检测的问题,本文提出一种基于融合特征金字塔网络(Feature pyramidnetworks,FPN)和Faster R-CNN(Faster region convolutional neural network)的行人检测算法。首先,对FPN和区域建议网络(Region proposal networks,RPN)... 针对多尺度行人检测的问题,本文提出一种基于融合特征金字塔网络(Feature pyramidnetworks,FPN)和Faster R-CNN(Faster region convolutional neural network)的行人检测算法。首先,对FPN和区域建议网络(Region proposal networks,RPN)进行融合;然后,对FPN和Fast R-CNN进行融合;最后,在Caltech数据集、KITTI数据集和ETC数据集上分别对融合FPN和Faster R-CNN的行人检测算法进行训练和测试。该算法在Caltech数据集、KITTI数据集和ETC数据集上的mAP(meanAverage Precision)分别达到69.72%,69.76%和89.74%。与Faster R-CNN相比,该算法不仅提高了行人检测精度,而且在多尺度行人检测的问题上也获得了较为满意的检测效果。 展开更多
关键词 特征金字塔网络 区域建议网络 FASTER R-CNN 多尺度行人检测
下载PDF
基于Faster R-CNN的多任务增强裂缝图像检测方法 被引量:15
11
作者 毛莺池 唐江红 +2 位作者 王静 平萍 王龙宝 《智能系统学报》 CSCD 北大核心 2021年第2期286-293,共8页
针对Faster R-CNN算法对多目标、小目标检测精度不高的问题,本文提出一种基于Faster R-CNN的多任务增强裂缝图像检测(Multitask Enhanced Dam Crack Image Detection Based on Faster R-CNN,ME-Faster RCNN)方法。同时提出一种基于K-me... 针对Faster R-CNN算法对多目标、小目标检测精度不高的问题,本文提出一种基于Faster R-CNN的多任务增强裂缝图像检测(Multitask Enhanced Dam Crack Image Detection Based on Faster R-CNN,ME-Faster RCNN)方法。同时提出一种基于K-means的多源自适应平衡TrAdaBoost的迁移学习方法(multi-source adaptive balance TrAdaBoost based on K-means,K-MABtrA)辅助网络训练,解决样本不足问题。ME-Faster R-CNN将图片输入ResNet-50网络提取特征;然后将所得特征图输入多任务增强RPN模型,同时改善RPN模型的锚盒尺寸和大小以提高检测识别精度,生成候选区域;最后将特征图和候选区域发送到检测处理网络。K-MABtrA方法利用K-means聚类删除与目标源差别较大的图像,再在多元自适应平衡TrAdaBoost迁移学习方法下训练模型。实验结果表明:将ME-Faster R-CNN在K-MABtrA迁移学习的条件下应用于小数据集大坝裂缝图像集的平均IoU为82.52%,平均精度mAP值为80.02%,与相同参数设置下的Faster R-CNN检测算法相比,平均IoU和mAP值分别提高了1.06%和1.56%。 展开更多
关键词 裂缝图像检测 Faster R-CNN 多任务检测 小目标检测 迁移学习 大坝安全 区域建议网络 小样本
下载PDF
基于Faster-RCNN的遥感图像飞机检测算法 被引量:13
12
作者 张中宝 王洪元 +1 位作者 张继 杨薇 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2018年第4期79-86,共8页
CCCV2017发布遥感图像飞机数据集,用于评测飞机检测算法.针对该遥感图像数据集中的飞机朝向不确定、图像覆盖范围广、图像背景复杂度高,导致飞机检测难度大、检测算法准确率和算法泛化能力低等问题,提出了基于Faster-RCNN的飞机检测改... CCCV2017发布遥感图像飞机数据集,用于评测飞机检测算法.针对该遥感图像数据集中的飞机朝向不确定、图像覆盖范围广、图像背景复杂度高,导致飞机检测难度大、检测算法准确率和算法泛化能力低等问题,提出了基于Faster-RCNN的飞机检测改进算法.首先,通过对图像采用翻转以及角度旋转等方式对数据集进行合理的扩增;然后,在扩增后的数据集上,使用深度残差网络对图像进行特征提取,针对数据集中飞机目标的长宽比特点优化区域建议网络;同时,为了防止训练集中正负样本不均衡,采用在线困难样本挖掘方法对数据进行训练.在CCCV2017数据集上评估表明,改进后的Faster-RCNN算法极大提高了初始的Faster-RCNN算法性能,在测试集上m AP达到了89.93%.在NWPUVHR-10、NWPU-RESISC45、UCAS-AOD遥感图像飞机数据集测试表明,该改进模型同样具有良好的性能,从而验证了该模型具有良好的鲁棒性和泛化能力. 展开更多
关键词 遥感图像 飞机检测 Faster-RCNN 残差网络 区域建议网络 在线困难样本挖掘
下载PDF
结合Faster R-CNN模型的遥感影像建筑物检测 被引量:13
13
作者 李东子 范大昭 苏亚龙 《测绘科学技术学报》 CSCD 北大核心 2018年第4期389-394,共6页
高分辨率遥感影像场景复杂,其中建筑物目标种类结构各异且存在大量遮挡,现有检测算法使用特征表达性不强。结合Faster R-CNN模型设计一种针对遥感影像的建筑物检测方法。首先通过共享卷积网络获取原始影像的深层特征图;然后结合区域建... 高分辨率遥感影像场景复杂,其中建筑物目标种类结构各异且存在大量遮挡,现有检测算法使用特征表达性不强。结合Faster R-CNN模型设计一种针对遥感影像的建筑物检测方法。首先通过共享卷积网络获取原始影像的深层特征图;然后结合区域建议网络生成初步检测结果;最后根据Fast R-CNN检测网络对结果进行进一步判定和边界回归。针对困难样本造成的训练中断,对训练策略进行改进,通过近似联合训练的方法对模型参数同步调优。实验结果表明,该方法准确率和召回率明显优于DPM方法,对非训练测试集遥感影像具有较好鲁棒性,有效实现了针对遥感影像的建筑物检测。 展开更多
关键词 遥感影像 建筑物检测 FASTER R-CNN模型 区域建议网络 近似联合训练
下载PDF
改进HSR-FCN的服装图像识别分类算法研究 被引量:10
14
作者 高妍 王宝珠 +1 位作者 郭志涛 周亚同 《计算机工程与应用》 CSCD 北大核心 2019年第16期144-149,共6页
目前网络上的服装图像数量增长迅猛,对于大量服装图像实现智能分类的需求日益增加。将基于区域的全卷积网络(Region-Based Fully Convolutional Networks,R-FCN)引入到服装图像识别中,针对服装图像分类中网络训练时间长、形变服装图像... 目前网络上的服装图像数量增长迅猛,对于大量服装图像实现智能分类的需求日益增加。将基于区域的全卷积网络(Region-Based Fully Convolutional Networks,R-FCN)引入到服装图像识别中,针对服装图像分类中网络训练时间长、形变服装图像识别率低的问题,提出一种新颖的改进框架HSR-FCN。新框架将R-FCN中的区域建议网络和HyperNet网络相融合,改变图片特征学习方式,使得HSR-FCN可以在更短的训练时间内达到更高的准确率。在模型中引入了空间转换网络,对输入服装图像和特征图进行了空间变换及对齐,加强了对多角度服装和形变服装的特征学习。实验结果表明,改进后的HSR-FCN模型有效地加强了对形变服装图像的学习,且在训练时间更短的情况下,比原来的网络模型R-FCN平均准确率提高了大约3个百分点,达到96.69%。 展开更多
关键词 服装图像 深度学习 图像分类 基于区域的全卷积网络(R-FCN) HyperNet 区域建议网络 空间转换网络
下载PDF
基于Faster RCNN的配网设备红外图像缺陷识别方法 被引量:9
15
作者 薛艺为 孙奇珍 党卫军 《信息技术》 2020年第7期79-83,91,共6页
配网设备异常通常伴有发热现象,红外图像能够有效检测出发热设备,预防配网事故的发生。随着红外图像采集技术在配网巡检中的广泛应用,积攒了大量配网设备红外图像,传统机器学习方法对缺陷设备检测的准确率低、泛化性差。为此,文中将深... 配网设备异常通常伴有发热现象,红外图像能够有效检测出发热设备,预防配网事故的发生。随着红外图像采集技术在配网巡检中的广泛应用,积攒了大量配网设备红外图像,传统机器学习方法对缺陷设备检测的准确率低、泛化性差。为此,文中将深度学习技术应用于配网设备红外图像检测,提出了基于Faster RCNN的缺陷检测方法。该方法采用深度残差网络提取图像特征,针对配网设备形状特点优化区域提议网络,借助共享卷积层训练网络。通过对8类典型配网设备缺陷测试表明,该方法对缺陷设备红外图像具有较高的检测准确率,且具有良好的鲁棒性和泛化能力。 展开更多
关键词 配网设备 缺陷检测 深度学习 Faster RCNN 区域建议网络
下载PDF
改进Mask R-CNN在航空影像目标检测的研究应用 被引量:8
16
作者 董旭彬 赵清华 《计算机工程与应用》 CSCD 北大核心 2021年第8期133-144,共12页
针对通用目标检测算法在检测航空影像目标所表现的性能缺陷,提出一种改进Mask R-CNN算法用于航空影像的目标检测。该算法增加图像融合网络,将可见光图像与红外图像进行融合,消除目标被阴影遮蔽对检测造成的影响;同时改进了特征金字塔结... 针对通用目标检测算法在检测航空影像目标所表现的性能缺陷,提出一种改进Mask R-CNN算法用于航空影像的目标检测。该算法增加图像融合网络,将可见光图像与红外图像进行融合,消除目标被阴影遮蔽对检测造成的影响;同时改进了特征金字塔结构,使特征提取过程中的高层语义特征和低层定位信息得到充分融合,各尺度目标的检测精度得到提升;为解决小目标检测精度低和定位难度高的问题,该算法采用新型区域建议网络SD-RPN,在不同深度的卷积层设置合理大小的滑动窗口,用以检测不同尺度类型目标,使建议区域更加精准。实验结果表明,相比较主流检测算法,该算法在VEDAI数据集上表现出色,检测精度提升较大,尤其是小目标检测的精度提升显著。 展开更多
关键词 航空影像 目标检测 图像融合 特征金字塔 区域建议网络
下载PDF
煤矿井下行人检测算法 被引量:7
17
作者 杨清翔 吕晨 +1 位作者 冯晨晨 王振宇 《工矿自动化》 北大核心 2020年第1期80-84,共5页
针对井下光照不均匀、行人特征与背景的相似度高等导致基于计算机视觉的行人检测技术在井下应用面临很大挑战的问题,提出采用Faster区域卷积神经网络(RCNN)进行煤矿井下行人检测。Faster RCNN行人检测算法采用区域建议网络(RPN)生成候... 针对井下光照不均匀、行人特征与背景的相似度高等导致基于计算机视觉的行人检测技术在井下应用面临很大挑战的问题,提出采用Faster区域卷积神经网络(RCNN)进行煤矿井下行人检测。Faster RCNN行人检测算法采用区域建议网络(RPN)生成候选区域,RPN与Fast RCNN共享卷积层,以提高网络训练和检测速度;在图像特征提取过程中采用动态自适应池化方法对不同池化域进行自适应池化操作,提高了检测准确性。实验结果表明,该算法对于不同环境下图像中的行人均具有较好的检测效果。 展开更多
关键词 井下行人检测 深度学习 区域卷积神经网络 区域建议网络 共享卷积层 动态自适应池化
下载PDF
基于Faster R-CNN的钢轨表面缺陷识别研究 被引量:7
18
作者 苏烨 李筠 +2 位作者 杨海马 刘瑾 江声华 《电子科技》 2020年第9期63-68,共6页
外界因素常会干扰钢轨表面缺陷检测仪器,导致其精度和效率降低。文中研究了一种基于Faster R-CNN网络检测钢轨表面缺陷的方法。该方法将预处理后的图像进行反转,利用Radon变换实现钢轨图像的投影。投影曲线中,利用钢轨长度为定值且灰度... 外界因素常会干扰钢轨表面缺陷检测仪器,导致其精度和效率降低。文中研究了一种基于Faster R-CNN网络检测钢轨表面缺陷的方法。该方法将预处理后的图像进行反转,利用Radon变换实现钢轨图像的投影。投影曲线中,利用钢轨长度为定值且灰度值小于图像平均值的特性,完成对钢轨表面区域的提取。然后通过区域建议网络提取候选区域,并与Fast R-CNN网络的区域建议对比分析,完成Faster R-CNN网络对钢轨的表面缺陷检测。试验数据表明,裂缝、疤痕、磨损和划伤4种缺陷的识别精度分别为92.17%、91.85%、93.45%和93.27%,证明使用该方法能够高效而又准确地识别钢轨的表面缺陷。 展开更多
关键词 钢轨表面缺陷 预处理 RADON变换 灰度值 区域建议网络 Faster R-CNN网络
下载PDF
嵌入注意力机制的自然场景文本检测方法 被引量:7
19
作者 杨锶齐 易尧华 +1 位作者 汤梓伟 王新宇 《计算机工程与应用》 CSCD 北大核心 2021年第24期185-191,共7页
针对自然场景文本检测中存在的文本检测信息缺失、漏检的问题,提出了嵌入注意力机制的自然场景文本检测方法。利用Faster-RCNN目标检测网络和特征金字塔网络(FPN)作为基本框架;在区域建议网络(RPN)中嵌入注意力机制并依据文本的特点改... 针对自然场景文本检测中存在的文本检测信息缺失、漏检的问题,提出了嵌入注意力机制的自然场景文本检测方法。利用Faster-RCNN目标检测网络和特征金字塔网络(FPN)作为基本框架;在区域建议网络(RPN)中嵌入注意力机制并依据文本的特点改进锚点(anchor)的设置,精确了文本候选区域;重新设定损失函数的作用范围。实验结果表明,该方法有效地保证文本检测信息的完整性,较之现有方法明显地提高了文本检测的召回率和准确率,能够应用于文本检测的实际任务中。 展开更多
关键词 自然场景文本检测 特征金字塔网络 区域建议网络 注意力机制
下载PDF
基于改进Mask R-CNN的多片烟叶部位的同步识别 被引量:3
20
作者 徐淼 朱波 +1 位作者 刘宇晨 张冀武 《湖南农业大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第2期170-175,共6页
为解决烟叶智能分级识别中需对多片散放烟叶同步进行部位识别的问题,提出一种基于改进Mask R-CNN的多片烟叶的部位同步识别方法:在Mask R-CNN区域建议网络中引入K-means聚类算法,对已标注目标检测框进行聚类,实现对预设的5种尺度的锚点... 为解决烟叶智能分级识别中需对多片散放烟叶同步进行部位识别的问题,提出一种基于改进Mask R-CNN的多片烟叶的部位同步识别方法:在Mask R-CNN区域建议网络中引入K-means聚类算法,对已标注目标检测框进行聚类,实现对预设的5种尺度的锚点尺寸和3种比例的锚点长宽比的优化,使其更加符合烟叶图像数据的分布特性,达到提高生成建议框的精确性、缩短识别时间的目的。基于采集的烟叶图像数据集,验证改进Mask R-CNN方法的有效性。结果表明,当IoU为0.5时,改进Mask R-CNN单样本耗时313 ms,比Mask R-CNN的326 ms快,在测试集上的均值平均精度(mAP)提高了3.56%。与Faster R-CNN和SSD目标检测算法相比,在准确率和召回率上也表现出优势。 展开更多
关键词 烟叶部位识别 Mask R-CNN 区域建议网络 K-MEANS聚类
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部