期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于CTC准则的普通话识别及改进
被引量:
7
1
作者
张立民
王彦哲
+1 位作者
张兵强
朱念斌
《计算机工程》
CAS
CSCD
北大核心
2019年第6期249-253,266,共6页
主流神经网络训练的交叉熵准则针对声学数据的每个帧进行分类优化,而连续语音识别需以序列级的转录准确性为性能度量指标。针对这一差异,构建一种基于序列级转录的端到端语音识别系统。以音素为基本单元建模,并采用连接时序分类(CTC)的...
主流神经网络训练的交叉熵准则针对声学数据的每个帧进行分类优化,而连续语音识别需以序列级的转录准确性为性能度量指标。针对这一差异,构建一种基于序列级转录的端到端语音识别系统。以音素为基本单元建模,并采用连接时序分类(CTC)的目标函数改进长短时记忆网络的结构。在解码过程中引入词典和语言模型,并在前端增加音调特征以丰富声学特征。利用序列区分度训练技术提升CTC模型的建模效果。实验结果表明,该系统的识别效率和识别准确率得到提高,词错误率最低可降至19.09%±0.16%。
展开更多
关键词
序列级
端到端
解码
声学特征
区分度
训练
下载PDF
职称材料
题名
基于CTC准则的普通话识别及改进
被引量:
7
1
作者
张立民
王彦哲
张兵强
朱念斌
机构
海军航空大学信息融合研究所
中国人民解放军
出处
《计算机工程》
CAS
CSCD
北大核心
2019年第6期249-253,266,共6页
基金
国家自然科学基金重大研究计划(91538201)
泰山学者工程专项经费(ts201511020)
文摘
主流神经网络训练的交叉熵准则针对声学数据的每个帧进行分类优化,而连续语音识别需以序列级的转录准确性为性能度量指标。针对这一差异,构建一种基于序列级转录的端到端语音识别系统。以音素为基本单元建模,并采用连接时序分类(CTC)的目标函数改进长短时记忆网络的结构。在解码过程中引入词典和语言模型,并在前端增加音调特征以丰富声学特征。利用序列区分度训练技术提升CTC模型的建模效果。实验结果表明,该系统的识别效率和识别准确率得到提高,词错误率最低可降至19.09%±0.16%。
关键词
序列级
端到端
解码
声学特征
区分度
训练
Keywords
sequence level
end-to-end
decode
acoustic feature
discrimination training
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于CTC准则的普通话识别及改进
张立民
王彦哲
张兵强
朱念斌
《计算机工程》
CAS
CSCD
北大核心
2019
7
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部