针对传统图像识别算法匹配正确率低、运行时间较长等问题,文中提出了基于改进ORB-FLANN(Oriented FAST and Rotated BRIEF-Fast Library for Approximate Nearest Neighbors)的工件图像识别方法。对ORB算法特征描述、图像特征匹配算法...针对传统图像识别算法匹配正确率低、运行时间较长等问题,文中提出了基于改进ORB-FLANN(Oriented FAST and Rotated BRIEF-Fast Library for Approximate Nearest Neighbors)的工件图像识别方法。对ORB算法特征描述、图像特征匹配算法进行修改,解决传统图像识别算法在图像存在尺度和旋转变换情况下存在的弊端并降低误匹配率。该方法对ORB算法检测到的特征点采用SURF(Speeded Up Robust Features)算法添加方向信息并完成特征描述,得到旋转尺度不变性的特征点,结合FLANN算法并引入双向匹配策略进行特征点粗匹配,最后利用渐进采样一致算法进一步剔除误匹配点对完成精匹配。实验结果表明,与其他方法相比,改进算法在处理尺度、旋转等变换图像时,匹配正确率分别提高了2.6%~18.8%和29.5%~43.9%,运行时长均在4 s以内,提高了对工件图像的识别效率和精准性。展开更多
针对ORB(Oriented FAST and Rotated BRIEF)算法不具有尺度不变性的缺陷,结合多尺度Shi-Tomasi算法提出了改进的ORB算法:STORB(Shi-Tomasi-ORB)算法。首先在多尺度空间中通过快速预筛选后检测Shi-Tomasi特征点,然后使用ORB算法生成具有...针对ORB(Oriented FAST and Rotated BRIEF)算法不具有尺度不变性的缺陷,结合多尺度Shi-Tomasi算法提出了改进的ORB算法:STORB(Shi-Tomasi-ORB)算法。首先在多尺度空间中通过快速预筛选后检测Shi-Tomasi特征点,然后使用ORB算法生成具有方向信息和尺度信息的特征点描述子,最后采用汉明(Hamming)距离对特征点进行匹配,并结合随机抽样一致(RANSAC)算法对匹配结果进行优化,实现图像的准确匹配。实验结果表明,STORB算法不仅保留了ORB算法优良的旋转不变性与实时性,而且当图像发生尺度变化时特征点匹配正确率达到了95.8%,比ORB算法提高了65.2%。展开更多
基于图像的三维重建近年来成为摄影测量和计算机视觉等学科的研究热点,其关键技术是将图像中的特征点进行提取和匹配,本文提出了一种混合式的图像特征检测与匹配算法。混合算法基于传统的Harris角点检测算法和SIFT算法,通过降采样构建...基于图像的三维重建近年来成为摄影测量和计算机视觉等学科的研究热点,其关键技术是将图像中的特征点进行提取和匹配,本文提出了一种混合式的图像特征检测与匹配算法。混合算法基于传统的Harris角点检测算法和SIFT算法,通过降采样构建图像尺度空间并提取Harris角点,采用综合图像色彩标准化算法(CCIN:Comprehensive Color Image Normalization)预处理图像,计算三色通道下的SIFT描述子,并二值化,最后通过欧式距离作为相似形度量实现两幅图像特征向量的匹配。在MATLAB 2014平台上实现混合算法,测试3组不同图像,结果表明,混合算法提取的特征数量优于Harris算法和SIFT算法,且特征分布均匀,采用了具有色彩属性的描述子,特征匹配正确率达到了90%以上。混合算法能提高特征提取的数量,提高特征匹配正确率,为后期三维重建建立基础。展开更多
文摘针对传统图像识别算法匹配正确率低、运行时间较长等问题,文中提出了基于改进ORB-FLANN(Oriented FAST and Rotated BRIEF-Fast Library for Approximate Nearest Neighbors)的工件图像识别方法。对ORB算法特征描述、图像特征匹配算法进行修改,解决传统图像识别算法在图像存在尺度和旋转变换情况下存在的弊端并降低误匹配率。该方法对ORB算法检测到的特征点采用SURF(Speeded Up Robust Features)算法添加方向信息并完成特征描述,得到旋转尺度不变性的特征点,结合FLANN算法并引入双向匹配策略进行特征点粗匹配,最后利用渐进采样一致算法进一步剔除误匹配点对完成精匹配。实验结果表明,与其他方法相比,改进算法在处理尺度、旋转等变换图像时,匹配正确率分别提高了2.6%~18.8%和29.5%~43.9%,运行时长均在4 s以内,提高了对工件图像的识别效率和精准性。
文摘针对ORB(Oriented FAST and Rotated BRIEF)算法不具有尺度不变性的缺陷,结合多尺度Shi-Tomasi算法提出了改进的ORB算法:STORB(Shi-Tomasi-ORB)算法。首先在多尺度空间中通过快速预筛选后检测Shi-Tomasi特征点,然后使用ORB算法生成具有方向信息和尺度信息的特征点描述子,最后采用汉明(Hamming)距离对特征点进行匹配,并结合随机抽样一致(RANSAC)算法对匹配结果进行优化,实现图像的准确匹配。实验结果表明,STORB算法不仅保留了ORB算法优良的旋转不变性与实时性,而且当图像发生尺度变化时特征点匹配正确率达到了95.8%,比ORB算法提高了65.2%。
文摘基于图像的三维重建近年来成为摄影测量和计算机视觉等学科的研究热点,其关键技术是将图像中的特征点进行提取和匹配,本文提出了一种混合式的图像特征检测与匹配算法。混合算法基于传统的Harris角点检测算法和SIFT算法,通过降采样构建图像尺度空间并提取Harris角点,采用综合图像色彩标准化算法(CCIN:Comprehensive Color Image Normalization)预处理图像,计算三色通道下的SIFT描述子,并二值化,最后通过欧式距离作为相似形度量实现两幅图像特征向量的匹配。在MATLAB 2014平台上实现混合算法,测试3组不同图像,结果表明,混合算法提取的特征数量优于Harris算法和SIFT算法,且特征分布均匀,采用了具有色彩属性的描述子,特征匹配正确率达到了90%以上。混合算法能提高特征提取的数量,提高特征匹配正确率,为后期三维重建建立基础。