勾股定理及其逆定理是平面几何中的重要定理之一,其应用极其广泛.如何运用勾股定理及其逆定理解题呢?本文总结几条规律供参考.一、当已知条件中有直角时,可考虑选用勾股定理例1 已知:如图1,矩形A8CD 中,AB=8,BC=10,沿AF 折叠矩形 ABCD,...勾股定理及其逆定理是平面几何中的重要定理之一,其应用极其广泛.如何运用勾股定理及其逆定理解题呢?本文总结几条规律供参考.一、当已知条件中有直角时,可考虑选用勾股定理例1 已知:如图1,矩形A8CD 中,AB=8,BC=10,沿AF 折叠矩形 ABCD,使点 D 刚好落在 BC 边上的 E 点处,求CF 及折痕 AF 的长.展开更多
文摘勾股定理及其逆定理是平面几何中的重要定理之一,其应用极其广泛.如何运用勾股定理及其逆定理解题呢?本文总结几条规律供参考.一、当已知条件中有直角时,可考虑选用勾股定理例1 已知:如图1,矩形A8CD 中,AB=8,BC=10,沿AF 折叠矩形 ABCD,使点 D 刚好落在 BC 边上的 E 点处,求CF 及折痕 AF 的长.