期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
无监督动态超图学习拉普拉斯矩阵特征选择
被引量:
5
1
作者
吴换霞
《计算机工程与设计》
北大核心
2022年第7期2078-2087,共10页
为捕捉样本之间的复杂关系,提升噪声鲁棒性,提出一种基于动态超图学习拉普拉斯矩阵的无监督特征选择方法。通过对训练样本的协方差矩阵施加正交约束,利用超图动态学习拉普拉斯矩阵分别保持低维训练样本的全局和局部结构,获取样本之间的...
为捕捉样本之间的复杂关系,提升噪声鲁棒性,提出一种基于动态超图学习拉普拉斯矩阵的无监督特征选择方法。通过对训练样本的协方差矩阵施加正交约束,利用超图动态学习拉普拉斯矩阵分别保持低维训练样本的全局和局部结构,获取样本之间的复杂关系;引入的两种子空间学习方法增强特征选择的辨别能力。通过公共数据集实验结果验证了提出方法能够提升特征选择质量,以及相关上游任务的精度和鲁棒性。
展开更多
关键词
无监督
动态
超图
学习
拉普拉斯矩阵
特征选择
子空间
学习
鲁棒性
正交约束
下载PDF
职称材料
题名
无监督动态超图学习拉普拉斯矩阵特征选择
被引量:
5
1
作者
吴换霞
机构
信阳农林学院信息工程学院
出处
《计算机工程与设计》
北大核心
2022年第7期2078-2087,共10页
基金
国家自然科学基金项目(61572417)。
文摘
为捕捉样本之间的复杂关系,提升噪声鲁棒性,提出一种基于动态超图学习拉普拉斯矩阵的无监督特征选择方法。通过对训练样本的协方差矩阵施加正交约束,利用超图动态学习拉普拉斯矩阵分别保持低维训练样本的全局和局部结构,获取样本之间的复杂关系;引入的两种子空间学习方法增强特征选择的辨别能力。通过公共数据集实验结果验证了提出方法能够提升特征选择质量,以及相关上游任务的精度和鲁棒性。
关键词
无监督
动态
超图
学习
拉普拉斯矩阵
特征选择
子空间
学习
鲁棒性
正交约束
Keywords
unsupervised
dynamic hyper-graph learning
Laplacian matrix
feature selection
subspace learning
robustness
orthogonal constraint
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
无监督动态超图学习拉普拉斯矩阵特征选择
吴换霞
《计算机工程与设计》
北大核心
2022
5
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部