期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于自适应模糊C均值算法的电力负荷分类研究 被引量:66
1
作者 杨浩 张磊 +1 位作者 何潜 牛强 《电力系统保护与控制》 EI CSCD 北大核心 2010年第16期111-115,122,共6页
针对当前负荷建模中存在的负荷时变性问题,提出了基于自适应模糊C均值聚类的电力负荷动特性分类方法。探讨了聚类分析方法在负荷动特性分类中的应用,包括聚类特征向量的选取和分类方法研究两个方面。对原始模糊C均值聚类算法中的聚类数... 针对当前负荷建模中存在的负荷时变性问题,提出了基于自适应模糊C均值聚类的电力负荷动特性分类方法。探讨了聚类分析方法在负荷动特性分类中的应用,包括聚类特征向量的选取和分类方法研究两个方面。对原始模糊C均值聚类算法中的聚类数c进行了研究,在原始算法中融入新的聚类有效性函数,对算法进行了改进,改进算法不需要预先选择类的数目作为先验值。通过动模实验数据的负荷分类实例,表明该方法可自动获取最佳分类数,且分类效果要好于原始算法。 展开更多
关键词 电力负荷 模糊C均值算法 自适应 动态特性 负荷建模
下载PDF
一种基于免疫网络理论的负荷分类方法 被引量:5
2
作者 顾丹珍 艾芊 陈陈 《电网技术》 EI CSCD 北大核心 2007年第S1期6-9,共4页
电力负荷动态特性聚类是负荷建模工作实用化的必经阶段。文中提出应用模糊免疫网络(fainet)作为负荷动态特性聚类方法:fainet可以将大量负荷数据压缩,形成简洁的免疫网络;然后用最小生成树(MST)方法对网络单元进行分类,得到每个分类的... 电力负荷动态特性聚类是负荷建模工作实用化的必经阶段。文中提出应用模糊免疫网络(fainet)作为负荷动态特性聚类方法:fainet可以将大量负荷数据压缩,形成简洁的免疫网络;然后用最小生成树(MST)方法对网络单元进行分类,得到每个分类的聚类中心;最后采用模糊规则对样本进行归类。对动模试验数据的分类计算表明,基于fainet的负荷动态特性聚类方法具有学习速度快,分类精度高,适用于电力负荷动态特性的聚类。 展开更多
关键词 电力负荷 模糊免疫网络 动态特性
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部