期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
顾及分层动态区域增长的车载LiDAR点云行道树提取方法
1
作者 关宇忻 王竞雪 许峥辉 《地球信息科学学报》 EI CSCD 北大核心 2024年第8期1975-1990,共16页
行道树的准确提取对生态园林城市建设及城市智慧化发展具有重要意义。但车载LiDAR点云数据中经常出现行道树与近邻地物相互遮掩、连接的情况,从而导致无法准确进行行道树提取。针对这一问题,本文提出一种分层动态区域增长行道树提取方... 行道树的准确提取对生态园林城市建设及城市智慧化发展具有重要意义。但车载LiDAR点云数据中经常出现行道树与近邻地物相互遮掩、连接的情况,从而导致无法准确进行行道树提取。针对这一问题,本文提出一种分层动态区域增长行道树提取方法。首先,通过点云栅格化滤除地面点并根据地物投影特征进行行道树初步提取。然后,根据地物分布特征对点云数据进行等高度分层处理,构建层次化点云空间,进一步获取行道树与干扰地物信息。接着,在层次化点云空间内部进行动态区域增长,获取同一层和相邻层之间的点云属性信息,生成点云聚类簇以区分行道树与干扰地物。最后,根据干扰地物的几何特征和行道树杆状特征,滤除干扰地物实现准确的行道树提取。本文选用激光雷达大会提供的竞赛数据及Open DataLab官网提供的里尔、巴黎两地区街道点云数据进行实验。实验结果表明,本文方法行道树提取的正确率与完整率分别在98.69与97.73之上。本文方法能够在行道树与近邻地物相互遮掩、连接的情况下实现准确完整的行道树提取。同时,本文分层动态区域增长行道树提取方法的数据适用性更强,并且可以在行道树独立性不强的情况下有效提取行道树。 展开更多
关键词 车载LiDAR 行道树提取 点云栅格化 层次化点云空间 动态区域增长 点云属性信息 点云聚类簇
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部