为满足特大型水利水电工程中的大直径超长距离引水隧洞定期检测的重大需求,智能化水下机器人系统成为当前的研究热点。为提高水下机械臂建模的准确性与控制能力的精准性,该文首先提出一种融合Newton-Euler方程、Morison方程与非线性摩...为满足特大型水利水电工程中的大直径超长距离引水隧洞定期检测的重大需求,智能化水下机器人系统成为当前的研究热点。为提高水下机械臂建模的准确性与控制能力的精准性,该文首先提出一种融合Newton-Euler方程、Morison方程与非线性摩擦力的水下机械臂动力学模型建模及参数辨识方法,并在补偿已辨识模型的基础上,设计了一种利用径向基函数(radial basis function,RBF)神经网络补偿系统未建模与建模误差的自适应滑模控制方法。通过仿真,该文证明了该方法比传统比例积分微分(proportional integral differential,PID)控制和一般RBF网络自适应滑模控制具有更高的控制精度。展开更多
为了实现超冗余机械臂动力学模型的精确辨识,提出了一种基于迭代优化和神经网络补偿的半参数动力学模型辨识方法。首先,介绍了超冗余机械臂的动力学模型和最小参数集,建立了关节非线性摩擦模型,使用遗传算法优化回归矩阵条件数生成激励...为了实现超冗余机械臂动力学模型的精确辨识,提出了一种基于迭代优化和神经网络补偿的半参数动力学模型辨识方法。首先,介绍了超冗余机械臂的动力学模型和最小参数集,建立了关节非线性摩擦模型,使用遗传算法优化回归矩阵条件数生成激励轨迹。然后建立了机械臂动力学模型物理可行性约束,基于迭代优化方法设计了两层循环网络对超冗余机械臂的惯性参数和关节摩擦模型进行辨识。最后,利用数据集训练BP神经网络,得到超冗余机械臂半参数动力学模型,并与多种算法进行了比较分析。实验结果表明:相较于传统的最小二乘算法和加权最小二乘算法,通过使用本文提出的辨识算法,关节辨识力矩残差均方根(Root Mean Square,RMS)之和分别提高了32.81%和23.76%,半参数动力学模型相比于全参数动力学模型力矩残差均方根之和提高了23.56%,辨识结果验证了辨识方法的有效性和优越性。展开更多
文摘为满足特大型水利水电工程中的大直径超长距离引水隧洞定期检测的重大需求,智能化水下机器人系统成为当前的研究热点。为提高水下机械臂建模的准确性与控制能力的精准性,该文首先提出一种融合Newton-Euler方程、Morison方程与非线性摩擦力的水下机械臂动力学模型建模及参数辨识方法,并在补偿已辨识模型的基础上,设计了一种利用径向基函数(radial basis function,RBF)神经网络补偿系统未建模与建模误差的自适应滑模控制方法。通过仿真,该文证明了该方法比传统比例积分微分(proportional integral differential,PID)控制和一般RBF网络自适应滑模控制具有更高的控制精度。
文摘为了实现超冗余机械臂动力学模型的精确辨识,提出了一种基于迭代优化和神经网络补偿的半参数动力学模型辨识方法。首先,介绍了超冗余机械臂的动力学模型和最小参数集,建立了关节非线性摩擦模型,使用遗传算法优化回归矩阵条件数生成激励轨迹。然后建立了机械臂动力学模型物理可行性约束,基于迭代优化方法设计了两层循环网络对超冗余机械臂的惯性参数和关节摩擦模型进行辨识。最后,利用数据集训练BP神经网络,得到超冗余机械臂半参数动力学模型,并与多种算法进行了比较分析。实验结果表明:相较于传统的最小二乘算法和加权最小二乘算法,通过使用本文提出的辨识算法,关节辨识力矩残差均方根(Root Mean Square,RMS)之和分别提高了32.81%和23.76%,半参数动力学模型相比于全参数动力学模型力矩残差均方根之和提高了23.56%,辨识结果验证了辨识方法的有效性和优越性。