期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
不完全非负矩阵分解的加速算法 被引量:13
1
作者 史加荣 焦李成 尚凡华 《电子学报》 EI CAS CSCD 北大核心 2011年第2期291-295,共5页
非负矩阵分解(NMF)已成为数据分析与处理的一种日益流行的方法.当数据矩阵不完全时,可用加权非负矩阵分解(WNMF)来分解矩阵.但是在WNMF算法中,对于给定的搜索方向,步长的选取一般来说不是最优的.本文研究了不完全非负矩阵分解(INMF)问题... 非负矩阵分解(NMF)已成为数据分析与处理的一种日益流行的方法.当数据矩阵不完全时,可用加权非负矩阵分解(WNMF)来分解矩阵.但是在WNMF算法中,对于给定的搜索方向,步长的选取一般来说不是最优的.本文研究了不完全非负矩阵分解(INMF)问题,提出了加速算法(AINMF).首先,将INMF问题转化为交替地求解两个非负最小二乘(NNLS)问题.对于每个NNLS问题,在搜索方向上采用精确的步长.接着,分析了NNLS问题的算法复杂度.最后,试验结果证实了AINMF优于WNMF. 展开更多
关键词 矩阵分解 不完全矩阵分解 数据丢失问题 加权矩阵分解 最小二乘
下载PDF
基于非下采样Shearlet和WNMF的红外热波图像融合 被引量:8
2
作者 吴一全 殷骏 曹照清 《光子学报》 EI CAS CSCD 北大核心 2014年第10期108-116,共9页
提出了基于非下采样Shearlet变换和加权非负矩阵分解的红外热波图像融合方法.红外热波序列图像经非下采样Shearlet变换后,采用动态加权非负矩阵分解算法对低频系数进行融合处理.该算法的加权系数依据图像像素突变度动态调整,以突出红外... 提出了基于非下采样Shearlet变换和加权非负矩阵分解的红外热波图像融合方法.红外热波序列图像经非下采样Shearlet变换后,采用动态加权非负矩阵分解算法对低频系数进行融合处理.该算法的加权系数依据图像像素突变度动态调整,以突出红外热波图像的缺陷区域;高频系数则采取基于区域改进拉普拉斯能量和的融合策略,以保持缺陷的边缘细节.实验结果表明,本文方法在主观视觉效果及边缘保持度、相关度、运行时间三种客观定量评价指标中,融合性能更优,具有快速、有效等优点,能更完整和清晰地保持红外热波图像的边缘轮廓.该方法可有效地应用于多幅红外热波序列图像的融合中,在红外热波无损检测领域具有较高的实用价值. 展开更多
关键词 无损检测 红外热波 图像融合 下采样Shearlet变换 加权矩阵分解 改进拉普拉斯能量和
下载PDF
基于加权非负矩阵分解的异常声音检测方法研究
3
作者 潘雨青 于浩 李峰 《计算机工程与科学》 CSCD 北大核心 2024年第8期1425-1432,共8页
异常声音检测方法多用强标签数据进行训练,而高质量的强标签音频数据标注难度较大、收集成本高昂。针对现有异常音频检测方法使用弱标签数据会受到非平稳和时变噪声的干扰,导致训练结果较差、准确率低的问题,提出一种基于音频频谱的加... 异常声音检测方法多用强标签数据进行训练,而高质量的强标签音频数据标注难度较大、收集成本高昂。针对现有异常音频检测方法使用弱标签数据会受到非平稳和时变噪声的干扰,导致训练结果较差、准确率低的问题,提出一种基于音频频谱的加权非负矩阵分解WNMF方法。该方法使用WNMF对弱标签和无标签数据进行标记,并分离目标声音事件和背景噪声。在适当的权值下,WNMF改变标记时不同频段音频信息的重要性,以抑制噪声,提高分离质量,使其逼近全监督模型训练的效果;之后使用卷积神经网络产生帧级预测和音频标签预测。仿真实验结果表明,该方法的准确率相比于传统NMF处理弱标签数据的方法提升了4.8%。 展开更多
关键词 异常声音检测 弱标签和无标签数据 加权矩阵分解 卷积神经网络
下载PDF
基于WNMF和区域分维的图像融合算法 被引量:3
4
作者 刘少鹏 郝群 +1 位作者 宋勇 胡摇 《仪器仪表学报》 EI CAS CSCD 北大核心 2010年第6期1310-1315,共6页
针对非负矩阵分解图像融合算法细节表现能力不足的缺陷,提出了一种基于加权非负矩阵分解和区域分维相结合的红外与可见光图像融合算法。在研究图像区域分维性质的基础上,用不同尺度上的区域分维来获取加权系数。通过设计加权系数的获取... 针对非负矩阵分解图像融合算法细节表现能力不足的缺陷,提出了一种基于加权非负矩阵分解和区域分维相结合的红外与可见光图像融合算法。在研究图像区域分维性质的基础上,用不同尺度上的区域分维来获取加权系数。通过设计加权系数的获取方法,重点突出边缘像素和小区域,以提高加权非负矩阵分解图像融合算法的细节提取能力,并得到最符合人眼视觉效果的融合图像。与现有基于标准或各种改进非负矩阵分解图像融合算法的对比实验表明,所提算法在平均梯度等表示细节信息的指标上提高了19%以上,有效改善了标准非负矩阵分解图像融合算法存在的不足。 展开更多
关键词 图像融合 加权矩阵分解 分维
下载PDF
基于NSCT域的动态WNMF图像融合算法的研究 被引量:3
5
作者 葛雯 杨阳 《激光技术》 CAS CSCD 北大核心 2019年第2期286-290,共5页
在红外线与可见光图像的融合过程中,经常会出现融合图像细节方面缺失的情况。为了解决这一问题,采用了改进的非下采样轮廓波变换(NSCT)图像融合算法,融入动态的加权非负矩阵分解规则(WNMF),对图像进行融合处理。结果表明,利用非下采样... 在红外线与可见光图像的融合过程中,经常会出现融合图像细节方面缺失的情况。为了解决这一问题,采用了改进的非下采样轮廓波变换(NSCT)图像融合算法,融入动态的加权非负矩阵分解规则(WNMF),对图像进行融合处理。结果表明,利用非下采样轮廓波变换算法对两幅源图像进行多尺度多方向的分解,可得到低频与高频部分;动态的WNMF融合规则作为低频部分的融合规则;高频部分中最高层的分解尺度采用绝对值取大的方法;高频部分其它各层则设定匹配度阈值;低于阈值时,使用基于区域能量匹配度的区域方差选大的方法;如果高于阈值时,采用加权平均的方法进行;通过对低频部分与高频部分的处理,用NSCT逆变换方式获得了融合图像。该方法有效提高了融合图像清晰度,凸显了其细节信息,缩短了所需的计算时间。 展开更多
关键词 图像处理 图像融合 下采样轮廓波变换 加权矩阵分解 区域能量匹配度
下载PDF
基于NSST域的改进加权非负矩阵分解的图像融合 被引量:3
6
作者 史敏红 高媛 +1 位作者 秦品乐 王丽芳 《科学技术与工程》 北大核心 2018年第3期268-273,共6页
针对加权非负矩阵分解中算法复杂度较高的问题,提出一种基于加权非负矩阵分解和双通道脉冲耦合神经网络的图像融合的改进算法。首先,对已经配准的两个源图像进行非下采样Shearlet变换;然后,对于图像低频子带,采用改进的WNMF的算法,动态... 针对加权非负矩阵分解中算法复杂度较高的问题,提出一种基于加权非负矩阵分解和双通道脉冲耦合神经网络的图像融合的改进算法。首先,对已经配准的两个源图像进行非下采样Shearlet变换;然后,对于图像低频子带,采用改进的WNMF的算法,动态更新权值矩阵,更好地提取图像特征信息。对于高频子带,采用改进双通道脉冲耦合神经网络的算法,链接强度值采用块的梯度值,更好地保留图像的微小细节信息;最后,经过非下采样Shearlet的逆变换得到融合图像。实验表明,将加权非负矩阵分解与双通道脉冲耦合神经网络相结合,不仅能很好的提取图像的特征信息,保留更多细节信息;同时双通道的脉冲耦合神经网络的方法能提高算法运行效率。 展开更多
关键词 加权矩阵分解 下采样剪切波变换 双通道脉冲耦合神经网络 链接强度
下载PDF
一种基于加权非负矩阵分解的矿产预测方法 被引量:2
7
作者 余先川 任雅丽 +4 位作者 初晓凤 徐金东 刘石华 李鸿镇 张洁 《地质学刊》 CAS 2013年第1期71-76,共6页
提出了一种新颖的基于加权非负矩阵分解的矿产预测方法,运用非负矩阵分解的非负性、降维性及稀疏性对多维矿产数据进行处理。通过R型聚类分析,按照变量相似度将变量聚合成群,对相关性高的元素的聚类结果进行加权非负矩阵分解得到基向量... 提出了一种新颖的基于加权非负矩阵分解的矿产预测方法,运用非负矩阵分解的非负性、降维性及稀疏性对多维矿产数据进行处理。通过R型聚类分析,按照变量相似度将变量聚合成群,对相关性高的元素的聚类结果进行加权非负矩阵分解得到基向量,进行回归分析验证基向量用于矿产预测的有效性。最后,以广东省新寮岽铜多金属矿区数据为例,通过基向量预测圈定异常,绘制矿产预测分布图,得到明显的异常区域,取得了好的预测结果。 展开更多
关键词 加权矩阵分解 矿产预测 聚类分析 空间数据挖掘 广东
下载PDF
基于SUSAN和加权非负矩阵分解的图像融合算法 被引量:1
8
作者 李雪军 郭洪 《福州大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第1期44-50,共7页
为了更好地保留源图像边缘信息、提高抗噪能力,提出一种基于SUSAN和加权非负矩阵分解的图像融合方法.运用SUSAN对像素点进行分类,根据分类结果构建加权矩阵,最后运用加权非负矩阵分解方法实现图像融合.实验证明,该方法能有效地保留边缘... 为了更好地保留源图像边缘信息、提高抗噪能力,提出一种基于SUSAN和加权非负矩阵分解的图像融合方法.运用SUSAN对像素点进行分类,根据分类结果构建加权矩阵,最后运用加权非负矩阵分解方法实现图像融合.实验证明,该方法能有效地保留边缘信息且抗噪性较好. 展开更多
关键词 图像融合 SUSAN 加权矩阵分解 抗噪性
原文传递
动态WNMF及在图像融合中的应用研究 被引量:5
9
作者 刘少鹏 郝群 宋勇 《传感技术学报》 CAS CSCD 北大核心 2010年第9期1266-1271,共6页
标准非负矩阵分解图像融合算法全局特征提取能力有限,造成融合图像的对比度不高,视觉效果不好,针对这一问题,对加权非负矩阵分解算法进行了深入研究,提出了动态加权非负矩阵分解思想并将之应用于红外与可见光图像融合。动态加权非负矩... 标准非负矩阵分解图像融合算法全局特征提取能力有限,造成融合图像的对比度不高,视觉效果不好,针对这一问题,对加权非负矩阵分解算法进行了深入研究,提出了动态加权非负矩阵分解思想并将之应用于红外与可见光图像融合。动态加权非负矩阵分解算法首先通过加权系数的设计指定重要特征,并在迭代过程中根据各区域相对重要程度的变化对加权系数进行动态调整,与标准非负矩阵分解算法相比较,动态加权非负矩阵分解算法全局特征提取能力得到了显著提升。对比实验表明,相对于目前常见标准非负矩阵分解图像融合算法,采用区域突变度作为目标函数的动态加权非负矩阵分解算法平均梯度提高了36%以上,标准差提高了17%以上。 展开更多
关键词 图像融合 特征提取 动态加权矩阵分解 突变度
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部