运行状态评价是指在过程正常生产的前提下,进一步判断生产过程运行状态的优劣.针对复杂工业过程定量信息与定性信息共存的情况,本文提出了一种基于随机森林的工业过程运行状态评价方法.针对随机森林中决策树信息存在冗余的问题,基于互...运行状态评价是指在过程正常生产的前提下,进一步判断生产过程运行状态的优劣.针对复杂工业过程定量信息与定性信息共存的情况,本文提出了一种基于随机森林的工业过程运行状态评价方法.针对随机森林中决策树信息存在冗余的问题,基于互信息将传统随机森林中的决策树进行分组,并选出每组中最优的决策树组成新的随机森林.同时为了强化评价精度高的决策树和弱化评价精度低的决策树对最终评价结果的影响,使用加权投票机制取代传统众数投票方法,最终构成一种基于互信息的加权随机森林算法(Mutual information weighted random forest,MIWRF).对于在线评价,本文通过计算在线数据处于各个等级的概率,并且结合提出的在线评价策略,判定当前样本运行状态等级.为了验证所提算法的有效性,将所提方法应用于湿法冶金浸出过程,实验结果表明,相对于传统随机森林算法,MIWRF降低了模型的复杂度,同时提高了运行状态评价精度.展开更多
为了解决多源挥发性有机物(Volatile Organic Compounds,VOCs)数据存在数据维度高、数据关系复杂、数据存在异常的问题,建立了基于核主成分分析(Kernel Principal Component Analysis,KPCA)、孤立森林(Isolated Forest,IF)、加权随机森...为了解决多源挥发性有机物(Volatile Organic Compounds,VOCs)数据存在数据维度高、数据关系复杂、数据存在异常的问题,建立了基于核主成分分析(Kernel Principal Component Analysis,KPCA)、孤立森林(Isolated Forest,IF)、加权随机森林(Weighted Random Forest,WRF)混合方法的VOCs数据清洗模型。首先对研究区域进行网格划分,建立了基于KPCA-IF的VOCs降维异常数据识别模型,通过KPCA方法对多源混合VOCs数据降维,使用IF算法识别异常数据并进行剔除。然后设计了基于WRF的VOCs数据补偿算法,对降维与异常识别后的数据集进行缺失值回归填补。最后,以西安市为例,选取空气质量数据、气象数据等多源VOCs数据进行数据清洗。结果表明,该混合模型可有效对多源VOCs数据降维,进行数据清洗的平均绝对误差为5.08、均方根误差为10.24、中值绝对误差为3.54,均优于对比模型,证明了KPCA-IF-WRF混合模型的鲁棒性更强、精确度更高,具有科学性和可行性。展开更多
由于椎骨间的形态差距较小、椎体的结构较为复杂,椎骨的CT图像分割处理近来成为医学研究的热门话题之一.本文针对脊柱CT图像水平集分割方法对初始轮廓敏感问题,提出了基于加权随机森林和水平集模型的有效椎骨CT分割方法WRF-CV(Wighted R...由于椎骨间的形态差距较小、椎体的结构较为复杂,椎骨的CT图像分割处理近来成为医学研究的热门话题之一.本文针对脊柱CT图像水平集分割方法对初始轮廓敏感问题,提出了基于加权随机森林和水平集模型的有效椎骨CT分割方法WRF-CV(Wighted Random forest-Chan Vese).本文方法提取图像的SIFT特征,利用加权随机森林回归算法获得脊柱中心点位置,并将平稳控制演化速度和噪声敏感度的水平集分割模型初始轮廓置于预测中心点处,通过求解能量函数演化方程最小值来实现椎骨分割.本文对5190张CT图像进行了评估,方法在椎骨分割测试中得到较好的分割效果,可以更加有效准确地分割椎骨CT图像.展开更多
文摘运行状态评价是指在过程正常生产的前提下,进一步判断生产过程运行状态的优劣.针对复杂工业过程定量信息与定性信息共存的情况,本文提出了一种基于随机森林的工业过程运行状态评价方法.针对随机森林中决策树信息存在冗余的问题,基于互信息将传统随机森林中的决策树进行分组,并选出每组中最优的决策树组成新的随机森林.同时为了强化评价精度高的决策树和弱化评价精度低的决策树对最终评价结果的影响,使用加权投票机制取代传统众数投票方法,最终构成一种基于互信息的加权随机森林算法(Mutual information weighted random forest,MIWRF).对于在线评价,本文通过计算在线数据处于各个等级的概率,并且结合提出的在线评价策略,判定当前样本运行状态等级.为了验证所提算法的有效性,将所提方法应用于湿法冶金浸出过程,实验结果表明,相对于传统随机森林算法,MIWRF降低了模型的复杂度,同时提高了运行状态评价精度.
文摘为了解决多源挥发性有机物(Volatile Organic Compounds,VOCs)数据存在数据维度高、数据关系复杂、数据存在异常的问题,建立了基于核主成分分析(Kernel Principal Component Analysis,KPCA)、孤立森林(Isolated Forest,IF)、加权随机森林(Weighted Random Forest,WRF)混合方法的VOCs数据清洗模型。首先对研究区域进行网格划分,建立了基于KPCA-IF的VOCs降维异常数据识别模型,通过KPCA方法对多源混合VOCs数据降维,使用IF算法识别异常数据并进行剔除。然后设计了基于WRF的VOCs数据补偿算法,对降维与异常识别后的数据集进行缺失值回归填补。最后,以西安市为例,选取空气质量数据、气象数据等多源VOCs数据进行数据清洗。结果表明,该混合模型可有效对多源VOCs数据降维,进行数据清洗的平均绝对误差为5.08、均方根误差为10.24、中值绝对误差为3.54,均优于对比模型,证明了KPCA-IF-WRF混合模型的鲁棒性更强、精确度更高,具有科学性和可行性。
文摘由于椎骨间的形态差距较小、椎体的结构较为复杂,椎骨的CT图像分割处理近来成为医学研究的热门话题之一.本文针对脊柱CT图像水平集分割方法对初始轮廓敏感问题,提出了基于加权随机森林和水平集模型的有效椎骨CT分割方法WRF-CV(Wighted Random forest-Chan Vese).本文方法提取图像的SIFT特征,利用加权随机森林回归算法获得脊柱中心点位置,并将平稳控制演化速度和噪声敏感度的水平集分割模型初始轮廓置于预测中心点处,通过求解能量函数演化方程最小值来实现椎骨分割.本文对5190张CT图像进行了评估,方法在椎骨分割测试中得到较好的分割效果,可以更加有效准确地分割椎骨CT图像.