期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多目标优化加权软投票集成算法的信用债违约预警研究 被引量:1
1
作者 郑怡昕 王重仁 《现代电子技术》 北大核心 2024年第8期43-48,共6页
为了提高信用债违约预测的准确性和稳定性,便于金融风险管理,以2014年1月1日—2021年12月31日的信用债为研究对象,提出一种基于多目标优化的加权软投票集成算法。该算法通过计算每个基分类器的模糊密度来量化其识别能力,并使用多目标粒... 为了提高信用债违约预测的准确性和稳定性,便于金融风险管理,以2014年1月1日—2021年12月31日的信用债为研究对象,提出一种基于多目标优化的加权软投票集成算法。该算法通过计算每个基分类器的模糊密度来量化其识别能力,并使用多目标粒子群算法来求解基分类器的权重。将所提算法与其他单一分类器如支持向量机、逻辑回归、高斯贝叶斯、MLP,以及其他集成算法如投票类集成算法(voting)和stacking算法进行比较,采用期望PFI算法进行特征重要度分析。结果表明,加权软投票集成算法在信用债违约预测中表现出色,不仅提升了单一算法的性能,且相对于其他集成算法,具有更高的准确性、精确度和AUC值。违约前主体评级、交易所、违约前债项评级、总资产周转率、货币资金、净资产增长率、经营活动现金流量占营收比、GDP、PPI、注册地、短期国债利率、宏观经济景气指数(先行指数)、债券类型和所属行业的特征重要度较高,在信用债违约中值得关注。该研究可为金融风险预测提供一种有效方法,对于投资者和金融机构的风险预警具有重要参考意义。 展开更多
关键词 金融风险管理 信用债违约预警 加权投票集成算法 多目标优化 模糊密度 期望PFI算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部