发电厂厂区内违规吸烟易导致火灾、爆炸等事故,会带来巨大损失;针对电厂内人员违规吸烟行为检测精度不高的问题,提出一种基于改进YOLOv5s(You Only Look Once v5s)的电厂内人员违规吸烟检测方法;该方法以YOLOv5s网络为基础,将YOLOv5s网...发电厂厂区内违规吸烟易导致火灾、爆炸等事故,会带来巨大损失;针对电厂内人员违规吸烟行为检测精度不高的问题,提出一种基于改进YOLOv5s(You Only Look Once v5s)的电厂内人员违规吸烟检测方法;该方法以YOLOv5s网络为基础,将YOLOv5s网络C3模块Bottleneck中的3×3卷积替换为多头自注意力层以提高算法的学习能力;接着在网络中添加ECA(Efficient Channel Attention)注意力模块,让网络更加关注待检测目标;同时将YOLOv5s网络的损失函数替换为SIoU(Scylla Intersection over Union),进一步提高算法的检测精度;最后采用加权双向特征金字塔网络(BiFPN,Bidirectional Feature Pyramid Network)代替原先YOLOv5s的特征金字塔网络,快速进行多尺度特征融合;实验结果表明,改进后算法吸烟行为的检测精度为89.3%,与改进前算法相比平均精度均值(mAP,mean Average Precision)提高了2.2%,检测效果显著提升,具有较高应用价值。展开更多
随着食用菌行业由自动化向智能化、信息化发展的趋势越来越明显,为了实现现代化菇房中平菇的准确检测,解决工厂化平菇栽培中收获阶段平菇之间相互遮挡等问题,帮助平菇采收机器人进行准确的自动化采收,该研究提出了一种基于YOLOv5(you on...随着食用菌行业由自动化向智能化、信息化发展的趋势越来越明显,为了实现现代化菇房中平菇的准确检测,解决工厂化平菇栽培中收获阶段平菇之间相互遮挡等问题,帮助平菇采收机器人进行准确的自动化采收,该研究提出了一种基于YOLOv5(you only look once version 5)模型的OMM-YOLO(ostreatus measure modle-YOLO)平菇目标检测与分类模型。通过在YOLOv5模型的Backbone层添加注意力模块,对输入的平菇图像特征进行动态加权,以获得更详细的特征信息,并在Neck层采用加权双向特征金字塔网络,通过与不同的特征层融合,提高算法的平菇目标检测的精度。此外,为了改善算法的准确性和边界框纵横比的收敛速度,该文采用了EIoU(enhanced intersection over union)损失函数替代了原有的损失函数。试验结果表明,与原始模型相比,改进模型OMM-YOLO对成熟平菇、未成熟平菇和未生长平菇的平均精度均值分别提高了0.4个百分点、4.5个百分点和1.1个百分点。与当前主流模型Resnet50、VGG16、YOLOv3、YOLOv4、YOLOv5m和YOLOv7相比,该模型的精确率、召回率和检测精度均处于优势,适用于收集现代化菇房中的平菇信息,有效避免了平菇之间因相互遮挡而产生的误检测现象。菇房平菇目标检测可以自动化地检测平菇的数量、生长状态等信息,帮助菇房工作人员掌握菇房内的菇况,及时调整温湿度等环境条件,提高生产效率,并且对可以对平菇进行质量控制,确保平菇产品的统一性和品质稳定性。同时可以减少对人工的依赖,降低人力成本,实现可持续发展,对智能化现代菇房建设具有积极作用。展开更多
文摘发电厂厂区内违规吸烟易导致火灾、爆炸等事故,会带来巨大损失;针对电厂内人员违规吸烟行为检测精度不高的问题,提出一种基于改进YOLOv5s(You Only Look Once v5s)的电厂内人员违规吸烟检测方法;该方法以YOLOv5s网络为基础,将YOLOv5s网络C3模块Bottleneck中的3×3卷积替换为多头自注意力层以提高算法的学习能力;接着在网络中添加ECA(Efficient Channel Attention)注意力模块,让网络更加关注待检测目标;同时将YOLOv5s网络的损失函数替换为SIoU(Scylla Intersection over Union),进一步提高算法的检测精度;最后采用加权双向特征金字塔网络(BiFPN,Bidirectional Feature Pyramid Network)代替原先YOLOv5s的特征金字塔网络,快速进行多尺度特征融合;实验结果表明,改进后算法吸烟行为的检测精度为89.3%,与改进前算法相比平均精度均值(mAP,mean Average Precision)提高了2.2%,检测效果显著提升,具有较高应用价值。
文摘随着食用菌行业由自动化向智能化、信息化发展的趋势越来越明显,为了实现现代化菇房中平菇的准确检测,解决工厂化平菇栽培中收获阶段平菇之间相互遮挡等问题,帮助平菇采收机器人进行准确的自动化采收,该研究提出了一种基于YOLOv5(you only look once version 5)模型的OMM-YOLO(ostreatus measure modle-YOLO)平菇目标检测与分类模型。通过在YOLOv5模型的Backbone层添加注意力模块,对输入的平菇图像特征进行动态加权,以获得更详细的特征信息,并在Neck层采用加权双向特征金字塔网络,通过与不同的特征层融合,提高算法的平菇目标检测的精度。此外,为了改善算法的准确性和边界框纵横比的收敛速度,该文采用了EIoU(enhanced intersection over union)损失函数替代了原有的损失函数。试验结果表明,与原始模型相比,改进模型OMM-YOLO对成熟平菇、未成熟平菇和未生长平菇的平均精度均值分别提高了0.4个百分点、4.5个百分点和1.1个百分点。与当前主流模型Resnet50、VGG16、YOLOv3、YOLOv4、YOLOv5m和YOLOv7相比,该模型的精确率、召回率和检测精度均处于优势,适用于收集现代化菇房中的平菇信息,有效避免了平菇之间因相互遮挡而产生的误检测现象。菇房平菇目标检测可以自动化地检测平菇的数量、生长状态等信息,帮助菇房工作人员掌握菇房内的菇况,及时调整温湿度等环境条件,提高生产效率,并且对可以对平菇进行质量控制,确保平菇产品的统一性和品质稳定性。同时可以减少对人工的依赖,降低人力成本,实现可持续发展,对智能化现代菇房建设具有积极作用。