期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于双耦合算法的煤与瓦斯突出预测模型 被引量:13
1
作者 付华 丰胜成 +1 位作者 高振彪 杨玉岗 《中国安全科学学报》 CAS CSCD 北大核心 2018年第3期84-89,共6页
为提高煤与瓦斯突出预测精度,有效预防瓦斯突出灾害,将等距映射(IsoMap)算法与优化加权向量机耦合算法(DDICS-WLS-SVM)相结合,建立煤与瓦斯突出双耦合算法预测模型。首先利用非线性流形学习IsoMap算法对煤与瓦斯突出高维数据进行数... 为提高煤与瓦斯突出预测精度,有效预防瓦斯突出灾害,将等距映射(IsoMap)算法与优化加权向量机耦合算法(DDICS-WLS-SVM)相结合,建立煤与瓦斯突出双耦合算法预测模型。首先利用非线性流形学习IsoMap算法对煤与瓦斯突出高维数据进行数据挖掘,提取其低维本质特征参量;然后通过逐维改进布谷鸟(DDICS)算法对加权最小二乘向量机(WLS-SVM)的正则化参数λ和高斯核参数σ进行寻优;最后对双耦合算法预测模型进行仿真试验,将IsoMap算法提取的低维本质特征作为该预测模型的输入,煤与瓦斯突出强度值作为模型的输出,并与PSO-SVM、LS-SVM方法的预测结果进行对比。结果表明:双耦合算法预测模型的平均相对误差为1.825%,最大相对误差为2.63%,该预测模型具有较高的预测精度。 展开更多
关键词 煤与瓦斯突出 加权最小向量(wls-svm) 等距映射(IsoMap)算法 耦合算法 预测
下载PDF
基于MPSO-WLS-SVM的矿井瓦斯涌出量预测模型研究 被引量:32
2
作者 付华 谢森 +1 位作者 徐耀松 陈子春 《中国安全科学学报》 CAS CSCD 北大核心 2013年第5期56-61,共6页
为有效预防瓦斯灾害,以预测矿井瓦斯涌出量为研究目的,提出经改进的粒子群算法(MPSO)优化的加权最小二乘支持向量机(WLS-SVM),并用其预测非线性动态瓦斯涌出量。算法通过对WLS-SVM的正则化参数C和高斯核参数σ寻优,建立基于MPSO优化的WL... 为有效预防瓦斯灾害,以预测矿井瓦斯涌出量为研究目的,提出经改进的粒子群算法(MPSO)优化的加权最小二乘支持向量机(WLS-SVM),并用其预测非线性动态瓦斯涌出量。算法通过对WLS-SVM的正则化参数C和高斯核参数σ寻优,建立基于MPSO优化的WLS-SVM的瓦斯涌出量预测模型,并利用某矿井监测到的各项历史数据进行实例分析。试验结果表明:该预测模型预测的最大相对误差为5.99%,最小相对误差为0.43%,平均相对误差为2.95%,较其他预测模型有更强的泛化能力和更高的预测精度。 展开更多
关键词 加权最小支持向量(wls-svm) 瓦斯涌出量 预测 改进的粒子群(MPSO)算法
下载PDF
基于滚动窗法最小二乘支持向量机的稳健预测模型 被引量:12
3
作者 赵永平 孙健国 《模式识别与人工智能》 EI CSCD 北大核心 2008年第1期1-5,共5页
在推导加权最小二乘支持向量机数学模型的基础上,基于启发式学习算法并结合滚动窗的思想,提出基于滚动窗法最小二乘支持向量机的稳健预测模型.为了缩短模型的预测运行时间,将启发式算法进行改进后,采用迭代求逆方法,在不丧失预测精度的... 在推导加权最小二乘支持向量机数学模型的基础上,基于启发式学习算法并结合滚动窗的思想,提出基于滚动窗法最小二乘支持向量机的稳健预测模型.为了缩短模型的预测运行时间,将启发式算法进行改进后,采用迭代求逆方法,在不丧失预测精度的基础上,很大程度地缩短预测时间.最后通过仿真实例验证这个模型可以成功抑制奇异点,实现稳健预测并取得良好效果. 展开更多
关键词 加权最小支持向量(wlssvm) 滚动窗 稳健 奇异点
原文传递
基于MPSO-CWLS-SVM的瓦斯涌出量预测 被引量:12
4
作者 付华 王馨蕊 +4 位作者 杨本臣 王志军 屠乃威 王雨虹 徐耀松 《传感技术学报》 CAS CSCD 北大核心 2014年第11期1568-1572,共5页
针对瓦斯涌出量受多因素影响,传统的预测方法难以建立准确的数学模型,导致预测精度低这一问题。提出一种经改进的粒子群算法(MPSO)优化的基于柯西分布加权的最小二乘支持向量机(CWLS-SVM)算法来预测非线性动态瓦斯涌出量。柯西分布加权... 针对瓦斯涌出量受多因素影响,传统的预测方法难以建立准确的数学模型,导致预测精度低这一问题。提出一种经改进的粒子群算法(MPSO)优化的基于柯西分布加权的最小二乘支持向量机(CWLS-SVM)算法来预测非线性动态瓦斯涌出量。柯西分布加权的最小二乘支持向量机根据预测误差的统计特性,确定加权规则参数,以达到赋予训练样本不同权值的目的。并用MPSO算法对CWLS-SVM模型的正则化参数λ和高斯核参数σ寻优。利用无线传感器网络采集到的各项历史数据进行实例分析。结果表明,该算法有效的提高了瓦斯涌出量的预测精度,降低了预测误差,为煤矿瓦斯防治提供理论支持。 展开更多
关键词 无线传感网络 瓦斯涌出量预测 加权最小支持向量(wls-svm) 柯西分布函数 改进的粒子群算法(MPSO)算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部