期刊文献+
共找到108篇文章
< 1 2 6 >
每页显示 20 50 100
基于改进Res-UNet网络的钢铁表面缺陷图像分割研究 被引量:16
1
作者 李原 李燕君 +2 位作者 刘进超 范衠 王庆林 《电子与信息学报》 EI CSCD 北大核心 2022年第5期1513-1520,共8页
为了提高钢铁质量图像检测的效率和精度,提高生产自动化水平,该文提出一种改进的Res-UNet网络分割算法。使用ResNet50代替ResNet18作为编码模块,增强特征提取能力;修改编码模块,使残差块间稠密连接,增强浅层特征的深度延展,充分利用特征... 为了提高钢铁质量图像检测的效率和精度,提高生产自动化水平,该文提出一种改进的Res-UNet网络分割算法。使用ResNet50代替ResNet18作为编码模块,增强特征提取能力;修改编码模块,使残差块间稠密连接,增强浅层特征的深度延展,充分利用特征;使用加权Dice损失和加权交叉熵损失(BCEloss)结合的新损失函数缓解样本不均衡的情况;数据集增强策略保证网络学习更多的样本特征,增强细节分割精度。相比于经典的UNet算法,组合优化后的Res-UNet网络的Dice系数最多提高了12.64%,达到0.7930,网络训练时间更短,对各类缺陷的分割精准度更优,证明该文算法在钢铁表面缺陷分割领域具有应用价值。 展开更多
关键词 缺陷分割 Res-UNet 稠密连接 加权损失 图像增强
下载PDF
正负样本差异特征双径向融合的自监督缺陷检测方法
2
作者 高港 魏利胜 朱圣博 《电子测量与仪器学报》 CSCD 北大核心 2024年第5期201-209,共9页
针对纹理图像表面划痕、裂纹等缺陷不规则、随机分布,导致缺陷检测准确率低的问题,研究一种基于正负样本差异特征双径向融合的自监督缺陷检测方法。首先,采用Otsu阈值分割提取图像前景信息,并以DTD数据集中的纹理图像或数据增强后的正... 针对纹理图像表面划痕、裂纹等缺陷不规则、随机分布,导致缺陷检测准确率低的问题,研究一种基于正负样本差异特征双径向融合的自监督缺陷检测方法。首先,采用Otsu阈值分割提取图像前景信息,并以DTD数据集中的纹理图像或数据增强后的正样本叠加Perlin噪声,对正样本图像进行缺陷模拟以合成负样本;然后,利用正负样本经编码器输出的中间特征,计算均方误差进行特征匹配,结合坐标注意力(coordinate attention, CA)和双径向路径聚合网络(path aggregation network, PANet)加强匹配特征的信息融合;最后,将融合特征与编码器输出的低层和高层特征一同输入解码器,优化调整Focal、L1和Dice损失函数权重,实现对缺陷掩码更精准地预测。实验显示,所提模型在MVTec AD数据集纹理类别上的平均图像级、像素级AUROC分别达到了0.995、0.968,相较于其他缺陷检测模型,分类和分割准确率均有提升,表明所提方法在纹理缺陷检测方面的有效性。 展开更多
关键词 缺陷检测 合成负样本 CA PANet 加权损失
下载PDF
基于部分加权损失函数的RefineDet 被引量:2
3
作者 肖振远 王逸涵 +2 位作者 罗建桥 熊鹰 李柏林 《计算机应用》 CSCD 北大核心 2021年第7期1928-1932,共5页
针对目标检测网络单阶改进目标检测器(RefineDet)对类间不平衡数据集中小样本类别检测性能差的问题,提出一种部分加权损失函数SWLoss。首先,以每个训练批量中不同类别样本数量的倒数作为启发式的类间样本平衡因子,对分类损失中的不同类... 针对目标检测网络单阶改进目标检测器(RefineDet)对类间不平衡数据集中小样本类别检测性能差的问题,提出一种部分加权损失函数SWLoss。首先,以每个训练批量中不同类别样本数量的倒数作为启发式的类间样本平衡因子,对分类损失中的不同类别进行加权,从而提高对小样本类别学习的关注程度;然后引入多任务平衡因子对分类损失和回归损失进行加权,缩小两个任务学习速率的差异;最后,在目标类别样本数量存在大幅差异的PascalVOC 2007数据集和点阵字符数据集上进行实验。结果表明,与原始RefineDet相比,基于SWLoss的RefineDet明显提高了小样本类别的检测精度,它在两个数据集上的平均精度均值(mAP)分别提高了1.01、9.86个百分点;与基于损失平衡函数和加权成对损失的RefineDet相比,基于SWLoss的RefineDet在两个数据集上的mAP分别提高了0.68、4.73和0.49、1.48个百分点。 展开更多
关键词 目标检测 不平衡数据集 加权损失 分类损失 回归损失
下载PDF
基于上下文语义增强的实体关系联合抽取 被引量:1
4
作者 雷景生 剌凯俊 +1 位作者 杨胜英 吴怡 《计算机应用》 CSCD 北大核心 2023年第5期1438-1444,共7页
基于span的联合抽取模型在实体和关系抽取(RE)任务中共享实体span的语义表示,能有效降低流水线模型带来的级联误差,但现有模型无法充分地将上下文信息融入实体和关系的表示中。针对上述问题,提出一个基于上下文语义增强的实体关系联合抽... 基于span的联合抽取模型在实体和关系抽取(RE)任务中共享实体span的语义表示,能有效降低流水线模型带来的级联误差,但现有模型无法充分地将上下文信息融入实体和关系的表示中。针对上述问题,提出一个基于上下文语义增强的实体关系联合抽取(JERCE)模型。首先通过对比学习的方法获取句子级文本和实体间文本的语义特征表示;然后,将该表示加入实体和关系的表示中,对实体关系进行联合预测;最后,动态调整两个任务的损失以使联合模型的整体性能最优化。在公共数据集CoNLL04、ADE和ACE05上进行实验,结果显示JERCE模型与触发器感知记忆流框架(TriMF)相比,实体识别F1值分别提升了1.04、0.13和2.12个百分点,RE的F1值则分别提升了1.19、1.14和0.44个百分点。实验结果表明,JERCE模型可以充分获取上下文中的语义信息。 展开更多
关键词 命名实体识别 关系抽取 对比学习 文本span 加权损失
下载PDF
基于梯度引导加权‒延迟负梯度衰减损失的长尾图像缺陷检测
5
作者 李巍 梁斯昕 张建州 《计算机应用》 CSCD 北大核心 2023年第10期3267-3274,共8页
针对目前图像缺陷检测模型对长尾缺陷数据集中尾部类检测效果较差的问题,提出一个基于梯度引导加权‒延迟负梯度衰减损失(GGW-DND Loss)。首先,根据检测器分类节点的累积梯度比值分别对正负梯度重新加权,减轻尾部类分类器的受抑制状态;其... 针对目前图像缺陷检测模型对长尾缺陷数据集中尾部类检测效果较差的问题,提出一个基于梯度引导加权‒延迟负梯度衰减损失(GGW-DND Loss)。首先,根据检测器分类节点的累积梯度比值分别对正负梯度重新加权,减轻尾部类分类器的受抑制状态;其次,当模型优化到一定阶段时,直接降低每个节点产生的负梯度,以增强尾部类分类器的泛化能力。实验结果表明,在自制图像缺陷数据集和NEU-DET(NEU surface defect database for Defect Detection Task)上,所提损失的尾部类平均精度均值(mAP)优于二分类交叉熵损失(BCE Loss),分别提高了32.02和7.40个百分点;与EQL v2(EQualization Loss v2)相比,分别提高了2.20和0.82个百分点,验证了所提损失能有效提升网络对尾部类的检测性能。 展开更多
关键词 长尾数据集 累计梯度比值 加权损失 图像缺陷检测 卷积神经网络
下载PDF
一种提高雷达系统输出信噪比的方法 被引量:1
6
作者 施文武 《电讯技术》 2006年第3期153-155,共3页
在给定雷达的检测概率和虚警概率后,系统输出信噪比直接影响雷达的作用距离。采用距离分段加权技术,可以减小加权引起的信噪比损失,从而提高了雷达的作用距离。给出了泰勒窗函数在距离分段加权中的应用,事实已证明该方法的可行性。
关键词 雷达 最大作用距离 信号处理 输出信噪比 窗函数 加权损失
下载PDF
基于加权损失函数下广义指数预报因子模型的汇率预测
7
作者 尹伟 严威 缪柏其 《数理统计与管理》 CSSCI 北大核心 2012年第5期799-804,共6页
本文提出在加权损失函数下构建汇率预测的广义指数预报因子模型。该方法首先选取有限个不同滑动参数构造指数预报因子,同时基于绝对值损失和平方损失的提出加权损失函数作为变量筛选的准则,然后在该准则下将指数预报因子进行线性组合,... 本文提出在加权损失函数下构建汇率预测的广义指数预报因子模型。该方法首先选取有限个不同滑动参数构造指数预报因子,同时基于绝对值损失和平方损失的提出加权损失函数作为变量筛选的准则,然后在该准则下将指数预报因子进行线性组合,建立汇率预报的广义指数预报因子模型。本文最后用英镑/美元单周汇率数据与文献中的一些已有方法做比较,实证分析表明本文提出的方法在汇率预测效果上有较大改进。 展开更多
关键词 指数加权滑动平均 加权损失 变量筛选 汇率预测
原文传递
加权损失函数在划分甘蔗种植区域的应用--以广西扶绥县某甘蔗种植区域为例
8
作者 何永宁 吴博 谭太恒 《南方自然资源》 2022年第2期37-42,50,共7页
文章针对深度学习中样本数量不均衡导致训练出来的神经网络模型(以下简称模型)性能下降、精度不高等问题,根据不同占比的样本数量设置不同的权重值,通过权重来控制不同类别的损失,调整原有交叉熵损失函数的计算结果,将训练权重更多地向... 文章针对深度学习中样本数量不均衡导致训练出来的神经网络模型(以下简称模型)性能下降、精度不高等问题,根据不同占比的样本数量设置不同的权重值,通过权重来控制不同类别的损失,调整原有交叉熵损失函数的计算结果,将训练权重更多地向样本数量较少的一类倾斜,从而使训练过程趋于平衡,进而不断提高模型的精度指标。此次实验选择了广西扶绥县甘蔗种植地块作为试验区,通过加权损失函数训练的模型计算得出的平均交占比(MIoU)为86.34%,而未使用加权损失函数的模型的平均交占比(MIoU)为83.28%。实验表明,加权损失函数能够有效提升模型的性能。 展开更多
关键词 损失函数 甘蔗分类 加权损失 广西扶绥县
下载PDF
一种改进的三维双路径脑肿瘤图像分割网络 被引量:14
9
作者 张恒良 李锵 关欣 《光学学报》 EI CAS CSCD 北大核心 2021年第3期54-61,共8页
近几年,深度学习在生物医学图像处理中的应用得到了广泛关注。从深度学习的基本理论和医学领域应用出发,提出了一种改进的三维双路径脑肿瘤图像分割网络,用于提高核磁共振成像序列中对脑肿瘤各个区域的检测精度。所提算法以3D-UNet为基... 近几年,深度学习在生物医学图像处理中的应用得到了广泛关注。从深度学习的基本理论和医学领域应用出发,提出了一种改进的三维双路径脑肿瘤图像分割网络,用于提高核磁共振成像序列中对脑肿瘤各个区域的检测精度。所提算法以3D-UNet为基础架构,首先,使用改进的双路径网络单元构成类似于UNet的编码-解码器结构,该网络单元在保留原有特征的同时,还可以在脑肿瘤的纹理、形状和边缘等方面产生新特征,来提高网络分割精度;其次,在双路径网络模块中加入多纤结构,在保证分割精度的同时减少了参数量;最后,在每个网络模块中的组卷积之后加入通道随机混合模块来解决组卷积导致的精度下降问题,并使用加权Tversky损失函数替代Dice损失函数,提高了小目标的分割精度。所提模型的平均DiceET、DiceWT和DiceTC均优于3D-ESPNet、DeepMedic、DMFNet等算法。该研究结果具有一定的现实意义和应用前景。 展开更多
关键词 图像处理 神经网络 双路径网络 脑肿瘤图像分割 加权损失函数
原文传递
基于深度学习特征融合的视网膜图像分类 被引量:10
10
作者 张添福 钟舜聪 +2 位作者 连超铭 周宁 谢茂松 《激光与光电子学进展》 CSCD 北大核心 2020年第24期258-265,共8页
针对光学相干层析视网膜图像进行人工分类诊断时存在漏检、效率低等问题,提出一种基于深度学习技术构建联合多层特征的卷积神经网络分类算法。首先通过均值漂移和数据归一化算法对视网膜图像进行预处理,并结合损失函数加权算法解决数据... 针对光学相干层析视网膜图像进行人工分类诊断时存在漏检、效率低等问题,提出一种基于深度学习技术构建联合多层特征的卷积神经网络分类算法。首先通过均值漂移和数据归一化算法对视网膜图像进行预处理,并结合损失函数加权算法解决数据不平衡问题;其次使用轻量深度可分离卷积替代普通卷积层,降低模型参数量,采用全局平均池化替换全连接层,增加空间鲁棒性,并联合不同卷积层构建特征融合层,加强层间特征流通;最后使用SoftMax分类器进行图像分类。实验结果表明,该模型在准确率、精确率、召回率上分别达到97%、95%、97%,缩短了识别时长,所提方法在视网膜图像分类诊断中具有良好的性能。 展开更多
关键词 图像处理 卷积神经网络 视网膜图像 特征融合 加权损失函数
原文传递
改进DeepLabV3+网络的遥感影像农作物分割方法 被引量:10
11
作者 任鸿杰 刘萍 +1 位作者 岱超 史俊才 《计算机工程与应用》 CSCD 北大核心 2022年第11期215-223,共9页
针对于当前遥感影像农作物提取存在的识别精度较低、边缘识别效果较差、提取速度慢等问题,提出了一种改进DeepLabV3+网络的遥感影像农作物分割方法。将特征提取网络改为更轻量级的MobileNetV2网络,空洞空间金字塔池化模块中的普通卷积... 针对于当前遥感影像农作物提取存在的识别精度较低、边缘识别效果较差、提取速度慢等问题,提出了一种改进DeepLabV3+网络的遥感影像农作物分割方法。将特征提取网络改为更轻量级的MobileNetV2网络,空洞空间金字塔池化模块中的普通卷积改为深度可分离卷积,大幅减少模型计算量,提高模型计算速度;在特征提取模块以及空洞空间金字塔池化模块加入双注意力机制,进一步优化模型边缘识别效果,提升模型分割精度。此外针对农作物数据集类别不平衡问题,引入加权损失函数,给予玉米、薏米与背景类不同的权重,提高模型对农作物区域分割精度。以2019年某地区的无人机遥感影像为研究对象,对玉米、薏米两种农作物进行分割。实验结果表明,改进DeepLabV3+算法像素准确率可达到93.9%,平均召回率可达到90.7%,平均交并比可达到83.3%,优于传统DeepLabV3+、Unet、Segnet等常用于农作物提取的分割方法,对农作物具有更好的分割效果。 展开更多
关键词 农作物分割 双注意力机制 加权损失函数 无人机遥感影像
下载PDF
基于类加权YOLO网络的水下目标检测 被引量:10
12
作者 朱世伟 杭仁龙 刘青山 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2020年第1期129-135,共7页
由于水下目标检测面临着图像模糊、尺度多样化、复杂背景等问题,给水下目标检测应用带来很多挑战.本文提出了一种基于类加权YOLO网络的水下目标检测方法,主要思想是在深度网络YOLO的基础上,构造了类加权损失函数,来平衡样本难易程度以... 由于水下目标检测面临着图像模糊、尺度多样化、复杂背景等问题,给水下目标检测应用带来很多挑战.本文提出了一种基于类加权YOLO网络的水下目标检测方法,主要思想是在深度网络YOLO的基础上,构造了类加权损失函数,来平衡样本难易程度以获得更好的效果,并引入了目标框自适应维度聚类方法,进一步提升了检测性能.实验结果表明,本文算法与传统的YOLO网络模型相比,在每幅图片包含近20个目标的密集目标检测任务中,能够将平均准确率从71.2%提升至74.1%,召回率由71.1%提升到78.3%. 展开更多
关键词 水下目标 YOLO 加权损失 自适应维度聚类
下载PDF
基于深度卷积神经网络的肺结节检测算法 被引量:9
13
作者 邓忠豪 陈晓东 《计算机应用》 CSCD 北大核心 2019年第7期2109-2115,共7页
在传统的肺结节检测算法中,存在检测敏感度低,假阳性数量大的问题。针对这一问题,提出了基于深度卷积神经网络(CNN)的肺结节检测算法。首先,有目的性地简化传统的全卷积分割网络;然后,创新地加入对部分CNN层的深监督并使用改进的加权损... 在传统的肺结节检测算法中,存在检测敏感度低,假阳性数量大的问题。针对这一问题,提出了基于深度卷积神经网络(CNN)的肺结节检测算法。首先,有目的性地简化传统的全卷积分割网络;然后,创新地加入对部分CNN层的深监督并使用改进的加权损失函数,获得高质量的候选肺结节,保证高敏感度;其次,设计了基于多尺度上下文信息的三维深度CNN来增强对图像的特征提取;最后,将训练得到的融合分类模型用于候选结节分类,以达到降低假阳率的目的。所提算法使用了LUNA16数据集,并通过对比实验验证算法的性能。在检测阶段,当每个CT检测出的候选结节数为50.2时,获得的敏感度为94.3%,与传统的全卷积分割网络相比提升了4.2个百分点;在分类阶段,竞争性能指标达到0.874。实验结果表明,所提算法能够有效提高检测敏感度和降低假阳率。 展开更多
关键词 肺结节检测 深度卷积神经网络 深监督 加权损失函数 多尺度
下载PDF
基于多尺度多任务卷积神经网络的人群计数 被引量:7
14
作者 曹金梦 倪蓉蓉 杨彪 《计算机应用》 CSCD 北大核心 2019年第1期199-204,共6页
在智能监控领域,实现人群计数具有重要价值,针对人群尺度不一、人群密度分布不均及遮挡等问题,提出一种多尺度多任务卷积神经网络(MMCNN)进行人群计数的方法。首先提出一种新颖的自适应人形核生成密度图描述人群信息,消除人群遮挡影响;... 在智能监控领域,实现人群计数具有重要价值,针对人群尺度不一、人群密度分布不均及遮挡等问题,提出一种多尺度多任务卷积神经网络(MMCNN)进行人群计数的方法。首先提出一种新颖的自适应人形核生成密度图描述人群信息,消除人群遮挡影响;其次通过构建多尺度卷积神经网络解决人群尺度不一问题,以多任务学习机制同时估计密度图及人群密度等级,解决人群分布不均问题;最后设计一种加权损失函数,提高人群计数准确率。在UCF_CC_50和World Expo'10数据库上进行了评估,验证了自适应人形核的有效性。实验结果表明:所提算法比Sindagi等的方法 (SINDAGI V A,PATEL V M. CNN-based cascaded multi-task learning of high-level prior and density estimation for crowd counting. Proceedings of the 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance. Piscataway,NJ:IEEE,2017:1-6)在UCF_CC_50数据库上平均绝对误差(MAE)数值和均方误差(MSE)数值分别降低约1. 7和45;与Zhang等的方法(ZHANG Y,ZHOU D,CHEN S,et al. Single-image crowd counting via multi-column convolutional neural network. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington,DC:IEEE Computer Society,2016:589-597)相比,在World Expo'10数据库上所提算法的MAE值降低约1. 5,且在真实公共汽车数据库上仅0~3人的计数误差,表明其实用性较强。 展开更多
关键词 人群计数 多尺度 多任务学习 卷积神经网络 自适应人形核 加权损失函数
下载PDF
面向三维模型视图特征提取的残差卷积网络优化 被引量:7
15
作者 刘杨圣彦 潘翔 +1 位作者 刘复昌 张三元 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2019年第6期936-942,共7页
在已有残差卷积神经网络基础上,采用加权损失函数提高视图特征的可分性,提出面向三维模型视图特征提取的残差卷积网络优化算法.首先对三维模型进行多视图渲染得到二维视图;然后通过残差网络扩展模块加深网络深度;最后采用中心损失函数... 在已有残差卷积神经网络基础上,采用加权损失函数提高视图特征的可分性,提出面向三维模型视图特征提取的残差卷积网络优化算法.首先对三维模型进行多视图渲染得到二维视图;然后通过残差网络扩展模块加深网络深度;最后采用中心损失函数和交叉熵损失函数定义加权损失函数,解决交叉熵损失函数因为类内距离小于类间距离而导致的特征不可分问题.在ModelNet数据集上的实验结果表明,该算法提取到的特征在三维模型分类问题上性能表现优异. 展开更多
关键词 多视图卷积网络 网络深度 残差网络 加权损失函数
下载PDF
基于3D U-Net的轻量级脑肿瘤分割网络 被引量:6
16
作者 魏欣 李锵 关欣 《光电子.激光》 CAS CSCD 北大核心 2022年第12期1338-1344,共7页
针对现有脑肿瘤核磁共振成像(magnetic resonance imaging, MRI)分割神经网络的参数量和计算量较大且对肿瘤区域小目标分割精度不高的问题,提出一种改进的轻量级脑肿瘤分割网络MF-RES2Net(multiple fiber residual-like networks)。该... 针对现有脑肿瘤核磁共振成像(magnetic resonance imaging, MRI)分割神经网络的参数量和计算量较大且对肿瘤区域小目标分割精度不高的问题,提出一种改进的轻量级脑肿瘤分割网络MF-RES2Net(multiple fiber residual-like networks)。该网络以3D U-Net为基础架构,将多纤模块(multi-fiber, MF)和类残差模块(RES2)相结合代替传统卷积模块。MF将特征图像的通道进行混合,增加了通道间信息的交流融合;RES2将通道均分,单通道的卷积结果相加到相邻通道,在扩大图像感受野的同时保留了细节特征,同时降低网络参数量。此外,为改善数据不平衡问题,提出一种改进的加权损失函数,提高了网络对小目标的分割精度。将MF-RES2Net在BRATS 2019数据集进行验证,完整肿瘤、核心肿瘤和增强肿瘤分割的平均Dice系数分别为89.98%、84.02%、77.62%,参数量和浮点数分别为3.16 M和16.24 G,结果表明:该网络在降低参数量和计算量的同时进一步提升了分割性能,有效地降低了网络运行时的设备要求。 展开更多
关键词 核磁共振成像(MFI) 脑肿瘤分割 卷积神经网络(CNN) 轻量级 加权损失函数
原文传递
基于残差收缩网络的睡眠脑电分期 被引量:5
17
作者 陈玲玲 毕晓君 《仪器仪表学报》 EI CAS CSCD 北大核心 2022年第2期148-155,共8页
现有睡眠分期方法存在特征提取不充分、类别间存在数据不平衡等问题,导致睡眠分期的精度不高。基于残差收缩网络设计高效的特征提取网络,同时,在损失函数中基于重加权思想设计了类别加权损失函数,通过调整损失函数有效解决了数据不平衡... 现有睡眠分期方法存在特征提取不充分、类别间存在数据不平衡等问题,导致睡眠分期的精度不高。基于残差收缩网络设计高效的特征提取网络,同时,在损失函数中基于重加权思想设计了类别加权损失函数,通过调整损失函数有效解决了数据不平衡对分类精度的影响。实验结果表明,改进算法在Sleep-EDF数据集中的Fpz-Cz、Pz-Oz通道上,准确率分别为85.4%和82.2%,MF_(1)分别为79.6%和75.4%,均高于基准算法和目前先进的对比算法,证明了算法的有效性和先进性。 展开更多
关键词 睡眠分期 残差收缩网络 类别加权损失函数 脑电信号 加权思想
下载PDF
深度自编码与改进损失函数在极端不均衡故障诊断中的应用 被引量:5
18
作者 段敏霞 刘鑫 董增寿 《科学技术与工程》 北大核心 2021年第11期4432-4438,共7页
在实际应用中,滚动轴承大多时候都是在正常状态下工作,因此收集到的故障数据较少,这就会产生数据不均衡的问题。这种数据不均衡问题极大地影响着模型的拟合和泛化能力,导致模型产生过拟合情况,而往往忽视对小类别样本的学习。尤其当故... 在实际应用中,滚动轴承大多时候都是在正常状态下工作,因此收集到的故障数据较少,这就会产生数据不均衡的问题。这种数据不均衡问题极大地影响着模型的拟合和泛化能力,导致模型产生过拟合情况,而往往忽视对小类别样本的学习。尤其当故障样本数极少时,此问题更突出。针对这个问题,提出一种基于改进交叉熵损失函数的深度自编码器的诊断模型,首先提取振动数据的小波包能量,其次将小波包能量输入到深度自编码器中,最后通过SoftMax分类器得到诊断结果。改进的加权损失函数可以根据各类别样本的数量调整权重系数,样本数量越少,系数越大,使得模型在训练时更专注于数量较少的样本。通过在凯斯西储大学及西安交通大学的轴承数据集上的两个实验表明,加权损失函数可以提高极端不均衡数据的诊断精度。 展开更多
关键词 数据不均衡 加权损失函数 权重系数 诊断精度
下载PDF
多尺度和纹理特征增强的小尺寸人脸检测 被引量:5
19
作者 张智 王进 +1 位作者 王杰 郑锦 《计算机应用研究》 CSCD 北大核心 2021年第3期914-918,共5页
针对现有人脸检测算法难以处理多尺度、多姿态的人脸检测,尤其是面对小尺寸时准确性低的问题,提出了多尺度和纹理特征增强的小尺寸人脸检测算法。该算法的多尺度增强模块能够丰富特征的多尺度信息,提高对多尺度人脸的检测能力;纹理特征... 针对现有人脸检测算法难以处理多尺度、多姿态的人脸检测,尤其是面对小尺寸时准确性低的问题,提出了多尺度和纹理特征增强的小尺寸人脸检测算法。该算法的多尺度增强模块能够丰富特征的多尺度信息,提高对多尺度人脸的检测能力;纹理特征增强模块能够通过融合低层的纹理信息提升高层语义的表达,从而加强对小尺寸人脸的检测能力;多阶段加权损失函数平衡网络的输出,充分发挥各个模块的增强作用。实验结果表明,该方法不仅在检测速度上可以达到实时,而且对MALF数据集中高度小于60像素的人脸检测精度可达88.69%;在FDDB数据集上相比目前的BBFCN算法精度提高近四个百分点。 展开更多
关键词 人脸检测 小尺寸人脸 多尺度增强 纹理特征增强 加权损失函数
下载PDF
结合Skip-gram和加权损失函数的神经网络推荐模型 被引量:4
20
作者 李淑芝 余乐陶 +1 位作者 邓小鸿 李志军 《计算机工程与应用》 CSCD 北大核心 2020年第19期76-85,共10页
针对网络推荐系统中传统的协同过滤技术在实际应用中存在数据稀疏、导致准确率低、推荐单一性等问题,提出一种结合Skip-gram项目嵌入和加权损失函数的深度神经网络的推荐模型DSM。采用了3层ReLU层对输出向量进行回归,在未使用附加信息... 针对网络推荐系统中传统的协同过滤技术在实际应用中存在数据稀疏、导致准确率低、推荐单一性等问题,提出一种结合Skip-gram项目嵌入和加权损失函数的深度神经网络的推荐模型DSM。采用了3层ReLU层对输出向量进行回归,在未使用附加信息的前提下提高了推荐精度;利用Skip-gram进行项目嵌入得到更稠密的表示向量,减少了计算量;并且使用加权损失函数训练深度神经网络的参数,平衡了推荐项目的受欢迎程度,保证了新颖性。在APP数据集和Last.fm数据集的实验结果表明,DSM模型在推荐应用程序和歌曲时,准确性和多样性方面相比现有方法均有一定的提高。 展开更多
关键词 推荐系统 数据稀疏 Skip-gram 加权损失函数 深度神经网络
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部