电池储能是碳中和目标的有力抓手,准确估计其能量状态(state of energy,SOE)和峰值功率状态(state of power,SOP)是电池储能高效可靠运行的关键和基础。由于电池的电化学反应过程十分复杂,作为隐性状态量的SOE和SOP精确值难以获得。为此...电池储能是碳中和目标的有力抓手,准确估计其能量状态(state of energy,SOE)和峰值功率状态(state of power,SOP)是电池储能高效可靠运行的关键和基础。由于电池的电化学反应过程十分复杂,作为隐性状态量的SOE和SOP精确值难以获得。为此,本工作提出了一种基于模型SOE和SOP联合估计方法。应用Thevenin等效电路模型,采用递归最小二乘法建立了在线参数辨识算法,获得准确的模型参数。为解决恒定功率需求下的功率预测难题,提出了多步功率预测法,提高了SOP的预测精度,并结合扩展卡尔曼滤波算法,进一步提出了多状态联合估计方法。实验验证了算法的可行性,结果表明,在存在较大初始误差的情况下,所提出的方法电压、SOE最大预测误差均<2%,实现了准确的SOP预测。展开更多
针对电池三大关键状态(State of Charge–SOC、State of Health-SOH、State of Power-SOP)之间相互耦合的关系,同时考虑到其估计精度受到电池时变的内部参数等因素影响的问题,提出一种基于自回归等效电路模型(autoregression equivalent...针对电池三大关键状态(State of Charge–SOC、State of Health-SOH、State of Power-SOP)之间相互耦合的关系,同时考虑到其估计精度受到电池时变的内部参数等因素影响的问题,提出一种基于自回归等效电路模型(autoregression equivalent circuit model,AR-ECM)的电池关键状态在线联合估计算法.该方法提出基于AR模型的全新电池ECM,给出同时表征SOC、SOH和电池内部压降的状态空间方程以及区别化参数更新策略.在此基础上,考虑状态方程容易发生不正定的问题,提出采用平方根无迹卡尔曼滤波(square root unscent kalman filter,SR-UKF)算法实现电池状态的联合估计.该算法的优势在于真正实现了电池关键状态以及ECM参数的联合估计,更符合实际工程应用需求.仿真验证表明,在噪声干扰环境下,该联合估计器能够得到较高的精确度和稳定性.展开更多
电池管理系统是保证锂电池系统稳定、高效、安全运行的重要技术手段。在电池管理系统中,电池状态估计,特别是荷电状态(state of charge,SOC)估计、健康状态(state of health,SOH)估计和功率状态(state of power,SOP)估计至关重要。SOC、...电池管理系统是保证锂电池系统稳定、高效、安全运行的重要技术手段。在电池管理系统中,电池状态估计,特别是荷电状态(state of charge,SOC)估计、健康状态(state of health,SOH)估计和功率状态(state of power,SOP)估计至关重要。SOC、SOH与SOP不仅与全生命周期内电池安全运行直接相关,也是其他功能有效实现的必要前提。文章研究的是SOH估算,此功能影响SOC的估算精度,进一步影响SOP的估算精度。文章基于实际的电池管理系统计算与控制能力,提出一种电池系统的SOH估算算法。展开更多
文摘电池储能是碳中和目标的有力抓手,准确估计其能量状态(state of energy,SOE)和峰值功率状态(state of power,SOP)是电池储能高效可靠运行的关键和基础。由于电池的电化学反应过程十分复杂,作为隐性状态量的SOE和SOP精确值难以获得。为此,本工作提出了一种基于模型SOE和SOP联合估计方法。应用Thevenin等效电路模型,采用递归最小二乘法建立了在线参数辨识算法,获得准确的模型参数。为解决恒定功率需求下的功率预测难题,提出了多步功率预测法,提高了SOP的预测精度,并结合扩展卡尔曼滤波算法,进一步提出了多状态联合估计方法。实验验证了算法的可行性,结果表明,在存在较大初始误差的情况下,所提出的方法电压、SOE最大预测误差均<2%,实现了准确的SOP预测。
文摘针对电池三大关键状态(State of Charge–SOC、State of Health-SOH、State of Power-SOP)之间相互耦合的关系,同时考虑到其估计精度受到电池时变的内部参数等因素影响的问题,提出一种基于自回归等效电路模型(autoregression equivalent circuit model,AR-ECM)的电池关键状态在线联合估计算法.该方法提出基于AR模型的全新电池ECM,给出同时表征SOC、SOH和电池内部压降的状态空间方程以及区别化参数更新策略.在此基础上,考虑状态方程容易发生不正定的问题,提出采用平方根无迹卡尔曼滤波(square root unscent kalman filter,SR-UKF)算法实现电池状态的联合估计.该算法的优势在于真正实现了电池关键状态以及ECM参数的联合估计,更符合实际工程应用需求.仿真验证表明,在噪声干扰环境下,该联合估计器能够得到较高的精确度和稳定性.
文摘电池管理系统是保证锂电池系统稳定、高效、安全运行的重要技术手段。在电池管理系统中,电池状态估计,特别是荷电状态(state of charge,SOC)估计、健康状态(state of health,SOH)估计和功率状态(state of power,SOP)估计至关重要。SOC、SOH与SOP不仅与全生命周期内电池安全运行直接相关,也是其他功能有效实现的必要前提。文章研究的是SOH估算,此功能影响SOC的估算精度,进一步影响SOP的估算精度。文章基于实际的电池管理系统计算与控制能力,提出一种电池系统的SOH估算算法。