期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于监督学习的数据预测服务构建方法 被引量:2
1
作者 李昭 宋壹 陈鹏 《计算机技术与发展》 2019年第9期188-194,共7页
数据处理、分析、预测是当前计算机行业发展的新增长点,也是经济社会不断进步的网络技术支撑。为更好地从数据中挖掘隐式特征和隐性关系,进一步提高数据预测的命中率、准确性,依托所研发的科研大数据服务平台提出了基于监督学习的数据... 数据处理、分析、预测是当前计算机行业发展的新增长点,也是经济社会不断进步的网络技术支撑。为更好地从数据中挖掘隐式特征和隐性关系,进一步提高数据预测的命中率、准确性,依托所研发的科研大数据服务平台提出了基于监督学习的数据预测服务构建方法。通过样本采集和特征提取、特征预处理、建模技术选取的步骤建立用于数据预测的数学模型,进而基于服务平台构建数据预测服务,同时结合平台共建共享、操作便捷等优势,提升数据预测服务的实用性和复用性。以新闻延时预测为实验用例,在平台中使用前向逐步线性回归和三维点云建模技术构建预测服务,通过10-折交叉验证对服务性能进行度量。实验结果表明,该方法复用性强,所构建的服务可对数据进行有效预测,为用户进行准确决策提供支持。 展开更多
关键词 监督学习 数据预测 服务构建 逐步回归 三维点云 交叉验证 新闻延时
下载PDF
Using hybrid models to predict blood pressure reactivity to unsupported back based on anthropometric characteristics 被引量:1
2
作者 Gurmanik KAUR Ajat Shatru ARORA Vijender Kumar JAIN 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2015年第6期474-485,共12页
Accurate blood pressure (BP) measurement is essential in epidemiological studies, screening programmes, and research studies as well as in clinical practice for the early detection and prevention of high BP-related ... Accurate blood pressure (BP) measurement is essential in epidemiological studies, screening programmes, and research studies as well as in clinical practice for the early detection and prevention of high BP-related risks such as coronary heart disease, stroke, and kidney failure. Posture of the participant plays a vital role in accurate measurement of BP. Guidelines on measurement of BP contain recommendations on the position of the back of the participants by advising that they should sit with supported back to avoid spuriously high readings. In this work, principal component analysis (PCA) is fused with forward stepwise regression (SWR), artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), and the least squares support vector machine (LS-SVM) model for the prediction of BP reactivity to an unsupported back in norrnotensive and hypertensive participants. PCA is used to remove multi-collinearity among anthropometric predictor variables and to select a subset of components, termed 'principal components' (PCs), from the original dataset. The selected PCs are fed into the proposed models for modeling and testing. The evaluation of the performance of the constructed models, using appropriate statistical indices, shows clearly that a PCA-based LS-SVM (PCA-LS-SVM) model is a promising approach for the prediction of BP reactivity in comparison to others. This assessment demonstrates the importance and advantages posed by hybrid models for the prediction of variables in biomedical research studies. 展开更多
关键词 Blood pressure (BP) Principal component analysis (PCA) Forward stepwise regression Artificial neural network(ANN) Adaptive neuro-fuzzy inference system (ANFIS) Least squares support vector machine (LS-SVM)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部