期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
非结构网格二阶有限体积法中黏性通量离散格式精度分析与改进 被引量:18
1
作者 王年华 李明 张来平 《力学学报》 EI CSCD 北大核心 2018年第3期527-537,共11页
非结构网格二阶有限体积离散方法广泛应用于计算流体力学工程实践中,研究非结构网格二阶精度有限体积离散方法的计算精度具有现实意义.计算精度主要受到网格和计算方法的影响,本文从单元梯度重构方法、黏性通量中的界面梯度计算方法两... 非结构网格二阶有限体积离散方法广泛应用于计算流体力学工程实践中,研究非结构网格二阶精度有限体积离散方法的计算精度具有现实意义.计算精度主要受到网格和计算方法的影响,本文从单元梯度重构方法、黏性通量中的界面梯度计算方法两个方面考察黏性流动模拟精度的影响因素.首先从理论上分析了黏性通量离散中的"奇偶失联"问题,并通过基于标量扩散方程的制造解方法验证了"奇偶失联"导致的精度下降现象,进一步通过引入差分修正项消除了"奇偶失联"并提高了扩散方程计算精度;其次,在不同类型、不同质量的网格上进行基于扩散方程的制造解精度测试,考察单元梯度重构方法、界面梯度计算方法对扩散方程计算精度的影响,结果显示,单元梯度重构精度和界面梯度计算方法均对扩散方程计算精度起重要作用;最后对三个黏性流动算例(二维层流平板、二维湍流平板和二维翼型近尾迹流动)进行网格收敛性研究,初步验证了本文的结论,得到了计算精度和网格收敛性均较好的黏性通量计算格式. 展开更多
关键词 非结构网格 有限体积方法 黏性通量 计算精度 网格收敛性研究 制造方法
下载PDF
基于制造解的非结构二阶有限体积离散格式的精度测试与验证 被引量:9
2
作者 王年华 张来平 +1 位作者 赵钟 赫新 《力学学报》 EI CSCD 北大核心 2017年第3期627-637,共11页
随着计算机技术的飞速进步,计算流体力学得到迅猛发展,数值计算虽能够快速得到离散结果,但是数值结果的正确性与精度则需要通过严谨的方法来进行验证和确认.制造解方法和网格收敛性研究作为验证与确认的重要手段已经广泛应用于计算流体... 随着计算机技术的飞速进步,计算流体力学得到迅猛发展,数值计算虽能够快速得到离散结果,但是数值结果的正确性与精度则需要通过严谨的方法来进行验证和确认.制造解方法和网格收敛性研究作为验证与确认的重要手段已经广泛应用于计算流体力学代码验证、精度分析、边界条件验证等方面.本文在实现标量制造解和分量制造解方法的基础上,通过将制造解方法精度测试结果与经典精确解(二维无黏等熵涡)精度测试结果进行对比,进一步证实了制造解精度测试方法的有效性,并将两种制造解方法应用于非结构网格二阶精度有限体积离散格式的精度测试与验证,对各种常用的梯度重构方法、对流通量格式、扩散通量格式进行了网格收敛性精度测试.结果显示,基于Green-Gauss公式的梯度重构方法在不规则网格上会出现精度降阶的情况,导致流动模拟精度严重下降,而基于最小二乘(least squares)的梯度重构方法对网格是否规则并不敏感.对流通量格式的精度测试显示,所测试的各种对流通量格式均能达到二阶精度,且各方法精度几乎相同;而扩散通量离散中界面梯度求解方法的选择对流动模拟精度有显著影响. 展开更多
关键词 验证与确认 制造方法 精确方法 网格收敛性研究 有限体积离散方法 数值模拟精度
下载PDF
非结构网格质量对梯度重构及无粘流动模拟精度的影响 被引量:8
3
作者 王年华 张来平 +1 位作者 马戎 赫新 《计算力学学报》 CSCD 北大核心 2017年第5期555-563,共9页
综合利用理论分析和数值测试手段,研究了非结构格心型有限体积离散中梯度重构算法的计算精度,分别给出了非结构算法中常用的基于Green-Gauss公式(GG方法)和基于Least squares方法(LSQ方法)的梯度重构方法达到至少一阶精度的条件。其中,G... 综合利用理论分析和数值测试手段,研究了非结构格心型有限体积离散中梯度重构算法的计算精度,分别给出了非结构算法中常用的基于Green-Gauss公式(GG方法)和基于Least squares方法(LSQ方法)的梯度重构方法达到至少一阶精度的条件。其中,GG方法在面积分低阶项不能互相抵消的情况下,要求面心插值精度达到至少二阶;而LSQ方法对于任意网格均能实现梯度重构一阶精度。在各向同性网格上的梯度重构精度数值测试验证了数学推导结论;进一步通过制造解方法量化无粘流动数值离散误差,结合网格收敛性测试研究了网格质量(网格点随机扰动、网格弯曲度和网格倾斜度等因素)以及网格类型(三角形和四边形)对无粘流动模拟精度的影响,验证了理论分析结论。 展开更多
关键词 非结构网格 梯度重构方法 数值模拟精度 制造方法 网格收敛性研究
下载PDF
HyperFLOW软件非结构网格亚跨声速湍流模拟的验证与确认 被引量:5
4
作者 王年华 常兴华 +1 位作者 马戎 张来平 《力学学报》 EI CSCD 北大核心 2019年第3期813-825,共13页
计算流体力学(computational fluid dynamics, CFD)数值模拟在航空航天等领域发挥越来越重要的作用,然而CFD数值模拟结果的可信度仍然需要通过不断地验证与确认来提高.本文给出了从制造解精度测试、简单到复杂外形湍流模拟网格收敛性研... 计算流体力学(computational fluid dynamics, CFD)数值模拟在航空航天等领域发挥越来越重要的作用,然而CFD数值模拟结果的可信度仍然需要通过不断地验证与确认来提高.本文给出了从制造解精度测试、简单到复杂外形湍流模拟网格收敛性研究等三个方面开展CFD软件验证与确认的方法,并对自主研发的CFD软件平台HyperFLOW在非结构网格上模拟亚跨声速湍流问题的能力进行了验证与确认.首先通过基于Euler方程和标量扩散方程的制造解精度测试,分别验证了HyperFLOW在非结构网格上对Euler方程和黏性项的求解精度,结果表明其能够在任意非结构网格上达到设计的二阶精度.其次,通过NASA Turbulence Modeling Resource中的湍流平板、二维翼型近尾迹流动、二维Bump等几个典型的亚声速湍流算例的网格收敛性研究,量化考察了数值结果的观测精度阶和网格收敛性指数,并与国外知名CFD解算器CFL3D,FUN3D的计算结果进行了对比,验证了HyperFLOW对简单湍流问题的模拟能力,且具有良好的网格收敛性和计算精度(阶).最后,通过NASA Common Research Model标模定升力系数的网格收敛性研究和升阻极曲线预测,验证了软件在复杂外形亚跨声速湍流流动数值模拟中也具有良好的可信度. 展开更多
关键词 湍流模拟 验证与确认 制造方法 网格收敛性指数 观测精度阶
下载PDF
黎曼边界条件在高阶精度非结构有限体积方法中的验证与应用
5
作者 孔令发 刘伟 董义道 《空气动力学学报》 CSCD 北大核心 2021年第3期21-32,I0001,共13页
黎曼边界条件是一种弱施加边界条件。通过引入有限波模型,对亚声速入口、出口以及远场边界可采用精确求解黎曼问题来统一处理,有效简化了此类边界条件的施加过程,避免了基于特征关系式与黎曼不变量的推导,并已在二阶精度非结构有限体积... 黎曼边界条件是一种弱施加边界条件。通过引入有限波模型,对亚声速入口、出口以及远场边界可采用精确求解黎曼问题来统一处理,有效简化了此类边界条件的施加过程,避免了基于特征关系式与黎曼不变量的推导,并已在二阶精度非结构有限体积方法中取得了较好的数值表现。为进一步验证该边界条件的实用价值,将其推广至高阶精度非结构有限体积离散。通过基于制造解方法(Method of Manufactured Solutions, MMS)的流动、亚声速无黏圆柱绕流及添加初始高斯脉冲扰动的非定常流动这三类数值算例,分别检验了黎曼边界条件在高阶精度非结构有限体积求解器中的数值表现。从计算结果来看,施加黎曼边界条件不会破坏离散格式的设计精度,同时,相比基于一维黎曼不变量的无反射边界条件,黎曼边界条件的施加过程简便,且维持了较好的出口特性,为基于非结构有限体积方法的高精度数值模拟提供了一种更加简单有效的亚声速边界处理方式。 展开更多
关键词 高阶精度非结构有限体积方法 弱施加边界条件 有限波模型 黎曼边界条件 无反射边界条件 制造方法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部