高分辨率地表冻融监测对研究根河地区碳氮循环、水土流失和土壤冻融侵蚀非常重要。本文采用Kou等(2017)提出的被动微波亮温降尺度方法和1 km空间分辨率的温度数据,将0.25°空间分辨率的被动微波亮温降尺度至0.01°空间分辨率。...高分辨率地表冻融监测对研究根河地区碳氮循环、水土流失和土壤冻融侵蚀非常重要。本文采用Kou等(2017)提出的被动微波亮温降尺度方法和1 km空间分辨率的温度数据,将0.25°空间分辨率的被动微波亮温降尺度至0.01°空间分辨率。利用通过模型模拟与实验数据发展得到的冻融判别式算法DFA_Zhao(Discriminant Function Algorithm)和改进的冻融判别式算法DFA_Kou(Improved Discriminant Function Algorithm),基于降尺度前后的被动微波亮温监测根河地区的地表冻融。以根河地区2013年7月-2015年12月的地下0-5 cm深度的实测土壤温度检验这两种冻融判识算法的分类精度。结果显示,降尺度前后两种冻融判识算法整体判对率差异在6.72%内;DFA_Zhao算法融化判对率的均值比DFA_Kou算法高10%,DFA_Kou算法冻结判对率均值比DFA_Zhao算法高1%。两种冻融判别式算法的冻结判对率均在90%以上,升轨期的融化判对率均在80%以上,但两算法降轨期的融化判对率较低,在40%-82%之间。同时,还进一步讨论并分析了两种冻融判别式算法和被动微波亮温降尺度方法可能存在的问题,指出了可能的改进方向。展开更多
基于冻融土的微波辐射特征,在HUT(Helsinki University of Technology)积雪辐射模型的基础上,引入新的冻土介电常数模型计算冻/融土的介电常数,利用高级积分方程模型(Advanced Integrated Emission Model,AIEM)计算地表发射率,改进了寒...基于冻融土的微波辐射特征,在HUT(Helsinki University of Technology)积雪辐射模型的基础上,引入新的冻土介电常数模型计算冻/融土的介电常数,利用高级积分方程模型(Advanced Integrated Emission Model,AIEM)计算地表发射率,改进了寒区复杂地表微波辐射模型和冻融状态判别式算法。采用AMSR^2(The Advanced Microwave Scanning Radiometer 2)被动微波辐射计亮温数据和地基微波辐射计观测数据进行了地表冻融状态判别式算法精度的验证与比较。结果显示:改进后的判别式算法对冻土的判识精度有明显提升,总体判识精度在82%以上,是一种较可靠的判别模式。展开更多
文摘高分辨率地表冻融监测对研究根河地区碳氮循环、水土流失和土壤冻融侵蚀非常重要。本文采用Kou等(2017)提出的被动微波亮温降尺度方法和1 km空间分辨率的温度数据,将0.25°空间分辨率的被动微波亮温降尺度至0.01°空间分辨率。利用通过模型模拟与实验数据发展得到的冻融判别式算法DFA_Zhao(Discriminant Function Algorithm)和改进的冻融判别式算法DFA_Kou(Improved Discriminant Function Algorithm),基于降尺度前后的被动微波亮温监测根河地区的地表冻融。以根河地区2013年7月-2015年12月的地下0-5 cm深度的实测土壤温度检验这两种冻融判识算法的分类精度。结果显示,降尺度前后两种冻融判识算法整体判对率差异在6.72%内;DFA_Zhao算法融化判对率的均值比DFA_Kou算法高10%,DFA_Kou算法冻结判对率均值比DFA_Zhao算法高1%。两种冻融判别式算法的冻结判对率均在90%以上,升轨期的融化判对率均在80%以上,但两算法降轨期的融化判对率较低,在40%-82%之间。同时,还进一步讨论并分析了两种冻融判别式算法和被动微波亮温降尺度方法可能存在的问题,指出了可能的改进方向。