期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
用于多模态MRI脑肿瘤图像分割的融合双重对抗学习CNN-Transformer模型 被引量:2
1
作者 华楷文 方贤进 《湖北民族大学学报(自然科学版)》 CAS 2023年第4期479-488,共10页
针对CNN(convolutional neural network)-Transformer分割模型在训练数据中提取特征信息不充分和鲁棒性差的问题,提出融合双重对抗学习的CNN-Transformer(CNN-Transformer model fusing dual adversarial learning,TransFDA)分割模型。... 针对CNN(convolutional neural network)-Transformer分割模型在训练数据中提取特征信息不充分和鲁棒性差的问题,提出融合双重对抗学习的CNN-Transformer(CNN-Transformer model fusing dual adversarial learning,TransFDA)分割模型。首先,引入判别器模块,此模块不同于常用的对抗学习方法,先将原始数据与预测出的结果进行判别,然后将原始数据中未分割区域的信息传入分割模型,加强分割模型对此区域信息的学习。其次,为提升分割模型的鲁棒性,引入虚拟对抗训练,使用模型正常预测结果和添加扰动后得到的预测结果进行对抗学习,提升分割模型对不确定数据信息的学习能力。在Brats2020验证集中,肿瘤整体区域(whole tumor,WT)、肿瘤核心区域(tumor core,TC)和增强肿瘤区域(enhancing tumor,ET)的戴斯相似系数(Dice similarity coefficient,DSC)分别为0.8922、0.7909、0.7530。相较于同等实验条件下的TransBTS(brain tumor segmentation using Transformer)模型性能有所提升。定量和定性实验结果表明,所提TransFDA在不需要额外添加数据的情况下学习到了更多的特征信息,增强了模型的鲁棒性,显著提升了模型分割精度。 展开更多
关键词 CNN-Transformer 对抗学习 判别模块 虚拟对抗训练 Brats2020
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部