期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多尺度卷积与Informer混合模型的非侵入式负荷监测方法
1
作者 韩林池 高放 +4 位作者 赵子巍 郭苏杭 李想 张冬冬 武新章 《电力自动化设备》 EI CSCD 北大核心 2024年第3期134-141,共8页
针对现有非侵入式负荷监测方法存在的负荷分解准确率低、模型泛化性能差的问题,提出一种多尺度卷积与Informer网络相结合的非侵入式负荷监测方法。采用数据分段优化方法对功率信号进行分段,利用多尺度卷积核获取不同时间尺度的特征序列... 针对现有非侵入式负荷监测方法存在的负荷分解准确率低、模型泛化性能差的问题,提出一种多尺度卷积与Informer网络相结合的非侵入式负荷监测方法。采用数据分段优化方法对功率信号进行分段,利用多尺度卷积核获取不同时间尺度的特征序列以及自适应提取多维度功率特征,从而形成特征矩阵;基于Informer网络中的概率稀疏自注意力机制在高维空间中充分捕获特性序列的长期依赖关系,从而提高预测准确率;利用分解值修正方法消除功率分解值中的“虚假”激活状态,以进一步提高分解精度。算例结果验证了所提方法的可行性。 展开更多
关键词 非侵入式负荷监测 多尺度卷积 Informer网络 分解修正 数据分段优化
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部