期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
融合教育心理学理论的分组教学优化算法 被引量:1
1
作者 闫恩奇 马良 刘勇 《计算机应用研究》 CSCD 北大核心 2022年第12期3694-3700,共7页
针对分组教学优化算法(group teaching optimization algorithm,GTOA)存在求解精度不高、易陷入局部最优的不足,提出了一种融入教育心理学理论的分组教学优化算法(educational psychology group teaching optimization algorithm,EPGTOA... 针对分组教学优化算法(group teaching optimization algorithm,GTOA)存在求解精度不高、易陷入局部最优的不足,提出了一种融入教育心理学理论的分组教学优化算法(educational psychology group teaching optimization algorithm,EPGTOA)。在杰出组学生的教学阶段融入支架式教学理论,在教学过程中帮助学生构建知识体系,更快地提高该组学生的学习能力,从而加强算法的局部搜索能力;在学生学习阶段融入建构主义发展观理论,学生逐渐形成自己独特的认知结构,吸收教师传授的知识,提高学习能力,从而增强算法的全局搜索能力。为验证EPGTOA的有效性,选取21个标准测试函数,将EPGTOA与GTOA和基于信息共享的分组教学优化算法、灰狼算法、蜉蝣算法、飞蛾扑火算法、教与学算法算法进行仿真实验,同时采用Wilcoxon检验和平均绝对误差对改进算法所得的数据进行统计分析,结果表明在5%的水平上是显著的。在算法稳定性、求解精度和收敛速度上,EPGTOA都比GTOA有所增强,尤其在求解高维问题上,改进算法有更好的性能。 展开更多
关键词 分组教学优化算法 支架式教学理论 建构主义发展观理论 优化
下载PDF
一种分组模式下的土壤重金属含量预测模型
2
作者 吕鑫涛 张聪 曹文琪 《软件导刊》 2021年第9期23-27,共5页
针对传统预测模型在土壤重金属含量预测上表现不佳问题,以土壤采样点数据集中的经度、纬度、高度以及农作物类型作为输入变量,建立一种基于分组教学优化算法的分组模式预测模型(GTOA-BP)。对武汉新城区土壤采样数据进行仿真预测,将GTOA... 针对传统预测模型在土壤重金属含量预测上表现不佳问题,以土壤采样点数据集中的经度、纬度、高度以及农作物类型作为输入变量,建立一种基于分组教学优化算法的分组模式预测模型(GTOA-BP)。对武汉新城区土壤采样数据进行仿真预测,将GTOA-BP模型与BP神经网络和径向基神经网络模型进行实验比较,结果表明:GTOA-BP的4种误差数据均低于其他两种模型。与BP神经网络相比,GTOA-BP的MAPE和SMAPE分别下降了9.97%和8.86%,与径向基神经网络相比,GTOA-BP的MAPE和SMAPE分别下降了6.24%和5.97%,说明该模型能降低神经网络训练的误差,提高预测精度。 展开更多
关键词 分组教学优化算法 重金属含量预测 GTOA-BP 分组模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部