期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于多模型融合Stacking集成学习的异常用电检测方法研究 被引量:3
1
作者 邝萌 李英娜 +1 位作者 李川 曹敏 《电力科学与工程》 2021年第3期23-29,共7页
针对单一异常用电检测方法对于存在不平衡性的数据集检测效率普遍不高的问题,提出了一种基于多模型融合Stacking集成学习的异常用电检测方法。首先,以居民用电数据作为研究对象,分析用户在习惯上表现的不同特征,结合不平衡处理技术和分... 针对单一异常用电检测方法对于存在不平衡性的数据集检测效率普遍不高的问题,提出了一种基于多模型融合Stacking集成学习的异常用电检测方法。首先,以居民用电数据作为研究对象,分析用户在习惯上表现的不同特征,结合不平衡处理技术和分类预测算法进行研究;其次,为了提高模型的整体性能,采用量子遗传算法对集成学习模型中的参数做优化处理;最后,通过云南某地区用电数据集进行验证,证明所提模型相比单一学习模型检测的准确率有明显提升,对提升异常排查效率,降低电力公司的运营成本具有重要意义。 展开更多
关键词 异常用电检测 多模型融合 不平衡处理技术 分类预测算法 Stacking集成学习
下载PDF
基于RFE+CatBoost模型的异常用电检测方法研究 被引量:3
2
作者 冉哲 李英娜 刘爱莲 《电视技术》 2021年第8期121-126,132,共7页
针对传统电力检测领域中异常用电检测模型需要调节大量超参数导致异常用电检测效率低下,以及模型选取特征不能充分反映实际用电情况导致分类精度不高的问题,提出一种基于RFE+CatBoost模型的异常用电检测方法。较传统的异常用电检测方法... 针对传统电力检测领域中异常用电检测模型需要调节大量超参数导致异常用电检测效率低下,以及模型选取特征不能充分反映实际用电情况导致分类精度不高的问题,提出一种基于RFE+CatBoost模型的异常用电检测方法。较传统的异常用电检测方法而言,CatBoost算法降低了模型检测对于超参数的依赖。以用户用电数据作为研究对象,结合RFE算法分析用户在用电表现上的不同特征,采用分类预测算法对异常用电行为进行进一步研究,最后通过云南某地用户用电数据集进行验证,与其他用电异常检测模型进行对比,实验证明所提模型具有很好的检测能力,对于提升企业用电异常检测效率、指导用户更好地用电具有重要意义。 展开更多
关键词 异常用电检测 特征递归消除 分类预测算法
下载PDF
永磁同步电机转子位置提取近似分类支持向量机灰色预测方法 被引量:5
3
作者 王磊 李颖晖 +2 位作者 祝晓辉 朱喜华 张敬 《电力系统保护与控制》 EI CSCD 北大核心 2010年第23期97-102,共6页
针对单一灰色预测方法下磁特性曲线建模对电机不同运行状态区分能力差、概括性不强,由此导致估计误差较大的问题,提出基于支持向量机分类细化特性曲线区,提高用以灰色GM(1,1)预测建模数据指数光滑度,改善转子信息估计精度的灰色近似支... 针对单一灰色预测方法下磁特性曲线建模对电机不同运行状态区分能力差、概括性不强,由此导致估计误差较大的问题,提出基于支持向量机分类细化特性曲线区,提高用以灰色GM(1,1)预测建模数据指数光滑度,改善转子信息估计精度的灰色近似支持向量机分类预测算法。将此预测方法用于永磁同步电机的矢量控制当中,数值仿真结果证明,引入先期近似支持向量机分类算法后的转子位置灰色预测法可以在较少测试数据集上达到较高的估计精度。 展开更多
关键词 永磁同步电机 转子位置自检测 灰色近似支持向量机分类预测算法 无传感器控制
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部