文摘针对入侵检测的特征和分类器参数选择问题,采用极限学习机ELM(extreme learning machine)进行构建分类器,提出一种蝙蝠算法(BA)联合选择特征和分类器参数的网络入侵检测模型(BA-ELM)。首先将特征子集和极限学习机参数编码成蝙蝠个体,以入侵检测准确率和特征数加权组成个体适应度函数;然后通过个体和群体更新的规则引导蝙蝠向最优解飞行,从而找到最优的子特征集和极限学习机参数;最后建立最优的入侵检测模型,并通KDD CUP 99数据集进行仿真性能分析。结果表明,BA-ELM较好地解决了入侵检测特征选择与分类器参数不匹配难题,提高了网络入侵检测率和检测效率,更加适合于网络入侵检测的实时要求。