Let A be a connected cochain DG algebra, whose underlying graded algebra is an Artin-Schelter regular algebra of global dimension 2 generated in degree 1. We give a description of all possible differential of A and co...Let A be a connected cochain DG algebra, whose underlying graded algebra is an Artin-Schelter regular algebra of global dimension 2 generated in degree 1. We give a description of all possible differential of A and compute H(A). Such kind of DG algebras are proved to be strongly Gorenstein. Some of them serve as examples to indicate that a connected DG algebra with Koszul underlying graded algebra may not be a Koszul DG algebra defined in He and We (J Algebra, 2008, 320: 2934-2962). Unlike positively graded chain DG algebras, we give counterexamples to show that a bounded below DC A-module with a free underlying graded A^#-module may not be semi-projective.展开更多
For a graded algebra,the minimal projective resolution often reveals amounts of information.All generated degrees of modules in the minimal resolution of the trivial module form a sequence,which can be called the degr...For a graded algebra,the minimal projective resolution often reveals amounts of information.All generated degrees of modules in the minimal resolution of the trivial module form a sequence,which can be called the degree distribution of the algebra.We try to find lower and upper bounds of the degree distribution,introduce the notion of(s,t)-(homogeneous) determined algebras and construct such algebras with the aid of algebras with pure resolutions.In some cases,the Ext-algebra of an(s,t)-(homogeneous) determined algebra is finitely generated.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 11001056)by the China Postdoctoral Science Foundation (Grant No. 20090450066),by the China Postdoctoral Science Foundation (Grant No. 201003244)by Key Disciplines of Shanghai Municipality (Grant No. S30104)
文摘Let A be a connected cochain DG algebra, whose underlying graded algebra is an Artin-Schelter regular algebra of global dimension 2 generated in degree 1. We give a description of all possible differential of A and compute H(A). Such kind of DG algebras are proved to be strongly Gorenstein. Some of them serve as examples to indicate that a connected DG algebra with Koszul underlying graded algebra may not be a Koszul DG algebra defined in He and We (J Algebra, 2008, 320: 2934-2962). Unlike positively graded chain DG algebras, we give counterexamples to show that a bounded below DC A-module with a free underlying graded A^#-module may not be semi-projective.
基金supported by National Natural Science Foundation of China(Grant Nos.11026106 and 10971188)National Natural Science Foundation of Zhejiang Province of China(Grant No.LQ12A01028)
文摘For a graded algebra,the minimal projective resolution often reveals amounts of information.All generated degrees of modules in the minimal resolution of the trivial module form a sequence,which can be called the degree distribution of the algebra.We try to find lower and upper bounds of the degree distribution,introduce the notion of(s,t)-(homogeneous) determined algebras and construct such algebras with the aid of algebras with pure resolutions.In some cases,the Ext-algebra of an(s,t)-(homogeneous) determined algebra is finitely generated.