配电网中分布式风电源选址定容时,计及风电机组出力和节点负荷的时序性特征。利用蒙特卡洛模拟MCS(Monte Carlo simulation)对一年内每小时风速进行抽样,并求出对应的风机出力。综合考虑每小时风机出力效率以及对应的节点小时负荷负载率...配电网中分布式风电源选址定容时,计及风电机组出力和节点负荷的时序性特征。利用蒙特卡洛模拟MCS(Monte Carlo simulation)对一年内每小时风速进行抽样,并求出对应的风机出力。综合考虑每小时风机出力效率以及对应的节点小时负荷负载率,构建小时场景,利用改进K-means聚类法进行场景聚类。根据聚类后每个场景的风机出力效率均值、负荷负载率均值以及对应场景的概率,以配电公司最小年费用成本为目标函数,利用改进遗传算法对分布式风电源进行选址定容。对33节点算例的仿真分析结果表明,风机出力与节点负荷的时序特性对分布式风电源的选址定容有重大影响,同时也验证了所提模型及方法的有效性。展开更多
文摘配电网中分布式风电源选址定容时,计及风电机组出力和节点负荷的时序性特征。利用蒙特卡洛模拟MCS(Monte Carlo simulation)对一年内每小时风速进行抽样,并求出对应的风机出力。综合考虑每小时风机出力效率以及对应的节点小时负荷负载率,构建小时场景,利用改进K-means聚类法进行场景聚类。根据聚类后每个场景的风机出力效率均值、负荷负载率均值以及对应场景的概率,以配电公司最小年费用成本为目标函数,利用改进遗传算法对分布式风电源进行选址定容。对33节点算例的仿真分析结果表明,风机出力与节点负荷的时序特性对分布式风电源的选址定容有重大影响,同时也验证了所提模型及方法的有效性。