智能分布式馈线自动化(feeder automation,FA)与主站集中式FA协同控制能够实现故障的最优处理。在协同控制下,馈线侧拓扑来源于配电终端的自动识别,主站侧拓扑由地理信息系统(geographic information system,GIS)或生产管理系统(product...智能分布式馈线自动化(feeder automation,FA)与主站集中式FA协同控制能够实现故障的最优处理。在协同控制下,馈线侧拓扑来源于配电终端的自动识别,主站侧拓扑由地理信息系统(geographic information system,GIS)或生产管理系统(production management,system,PMS)通过增量导入,存在连通混乱,与实际的拓扑运行方式不一致等问题。为实现基于智能分布式FA与主站后备的故障隔离和非故障区域恢复供电技术,促使拓扑模型统一,提出了在静态拓扑或者拓扑运行方式发生变化的情况下,由主控智能配电终端启动拓扑查询功能并生成馈线拓扑文件。进而将该模型文件上传至配电自动化主站,对主站侧的静态拓扑模型和动态拓扑模型进行校核,实现了对主站侧拓扑模型的纠正。同时通过实验验证了该校核方案的可行性,完全满足配电网的要求。展开更多
文摘智能分布式馈线自动化(feeder automation,FA)与主站集中式FA协同控制能够实现故障的最优处理。在协同控制下,馈线侧拓扑来源于配电终端的自动识别,主站侧拓扑由地理信息系统(geographic information system,GIS)或生产管理系统(production management,system,PMS)通过增量导入,存在连通混乱,与实际的拓扑运行方式不一致等问题。为实现基于智能分布式FA与主站后备的故障隔离和非故障区域恢复供电技术,促使拓扑模型统一,提出了在静态拓扑或者拓扑运行方式发生变化的情况下,由主控智能配电终端启动拓扑查询功能并生成馈线拓扑文件。进而将该模型文件上传至配电自动化主站,对主站侧的静态拓扑模型和动态拓扑模型进行校核,实现了对主站侧拓扑模型的纠正。同时通过实验验证了该校核方案的可行性,完全满足配电网的要求。