对于具有多个调度中心的大规模多区域交直流互联电网,对最优潮流计算进行分布式求解更符合信息的保密性和安全性需求。通过将联络线复制同时放到相邻分区中和引入边界变量一致性约束的方法建立交直流互联电网分布式最优潮流模型,并提出...对于具有多个调度中心的大规模多区域交直流互联电网,对最优潮流计算进行分布式求解更符合信息的保密性和安全性需求。通过将联络线复制同时放到相邻分区中和引入边界变量一致性约束的方法建立交直流互联电网分布式最优潮流模型,并提出了一种完全分布式的不需要任何协调中心的同步交替方向乘子法(Synchronous Alternating Direction Method of Multipliers,SADMM)求解最优潮流模型。对于交直流系统直流部分的网络分区,提出将换流站保留在各自区域中只将中间直流线路复制的直流联络线处理方法。SADMM通过对高斯赛德尔型ADMM(GS-ADMM)进行改进,将当前迭代得到的相邻区域边界节点电压值的加权平均作为下一次迭代的固定参考值,实现不同区域间的并行同步计算。并根据优化问题的特点,确定算法中惩罚因子的合理取值,以加快算法的收敛性。以某一实际大规模交直流互联电网和两个修改的IEEE交直流系统为例,通过与集中式最优潮流计算比较,验证了所提算法的正确有效性。展开更多
电网中的不同电力公司所管辖子系统具有相互独立且互联的特点,各子系统之间的互联给电网的分布式计算带来一定挑战,如何实现大系统的分布式计算备受关注。提出基于交替方向乘子法(alternating directionmethod of multipliers,ADMM)的...电网中的不同电力公司所管辖子系统具有相互独立且互联的特点,各子系统之间的互联给电网的分布式计算带来一定挑战,如何实现大系统的分布式计算备受关注。提出基于交替方向乘子法(alternating directionmethod of multipliers,ADMM)的含风电场系统分布式直流最优潮流(direct current optimal power flow,DC-OPF)计算模型,该模型考虑风电并网对系统分布式DC-OPF的影响,采用分解协调法实现系统的分区过程,通过引入全局变量处理边界节点问题,在信息传递过程中无需中心处理系统,只在相邻子区域之间进行复制边界节点的信息传递以减少信息通信量,实现系统的全分布式DC-OPF计算。以6节点系统、IEEE-39节点系统分析全局变量的个数对迭代收敛的影响,并讨论风电并网对优化收敛的影响,最后通过仿真验证该文所提模型的准确性和有效性。展开更多
文摘对于具有多个调度中心的大规模多区域交直流互联电网,对最优潮流计算进行分布式求解更符合信息的保密性和安全性需求。通过将联络线复制同时放到相邻分区中和引入边界变量一致性约束的方法建立交直流互联电网分布式最优潮流模型,并提出了一种完全分布式的不需要任何协调中心的同步交替方向乘子法(Synchronous Alternating Direction Method of Multipliers,SADMM)求解最优潮流模型。对于交直流系统直流部分的网络分区,提出将换流站保留在各自区域中只将中间直流线路复制的直流联络线处理方法。SADMM通过对高斯赛德尔型ADMM(GS-ADMM)进行改进,将当前迭代得到的相邻区域边界节点电压值的加权平均作为下一次迭代的固定参考值,实现不同区域间的并行同步计算。并根据优化问题的特点,确定算法中惩罚因子的合理取值,以加快算法的收敛性。以某一实际大规模交直流互联电网和两个修改的IEEE交直流系统为例,通过与集中式最优潮流计算比较,验证了所提算法的正确有效性。
文摘电网中的不同电力公司所管辖子系统具有相互独立且互联的特点,各子系统之间的互联给电网的分布式计算带来一定挑战,如何实现大系统的分布式计算备受关注。提出基于交替方向乘子法(alternating directionmethod of multipliers,ADMM)的含风电场系统分布式直流最优潮流(direct current optimal power flow,DC-OPF)计算模型,该模型考虑风电并网对系统分布式DC-OPF的影响,采用分解协调法实现系统的分区过程,通过引入全局变量处理边界节点问题,在信息传递过程中无需中心处理系统,只在相邻子区域之间进行复制边界节点的信息传递以减少信息通信量,实现系统的全分布式DC-OPF计算。以6节点系统、IEEE-39节点系统分析全局变量的个数对迭代收敛的影响,并讨论风电并网对优化收敛的影响,最后通过仿真验证该文所提模型的准确性和有效性。