期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于动态双种群NSGA2算法的分布式柔性作业车间调度研究
1
作者 汪豪 谢辉 李艳武 《机电工程》 CAS 北大核心 2024年第12期2252-2260,共9页
在分布式柔性作业车间多目标调度问题的求解过程中,存在调度规模大、多个目标难以协调等缺陷。针对上述缺陷,提出了一种改进的非支配排序遗传算法Ⅱ(NSGA2),并对分布式柔性作业车间多目标调度问题进行了求解。首先,建立了以完工时间、... 在分布式柔性作业车间多目标调度问题的求解过程中,存在调度规模大、多个目标难以协调等缺陷。针对上述缺陷,提出了一种改进的非支配排序遗传算法Ⅱ(NSGA2),并对分布式柔性作业车间多目标调度问题进行了求解。首先,建立了以完工时间、机器负荷、能耗为优化目标的分布式柔性作业车间多目标调度模型;然后,基于帕累托(Pareto)等级特点设计了一种动态双种群搜索策略和种群划分机制,以替代传统的选择操作,并对每个种群采用了不同的搜索策略;针对关键工厂,在第二个种群中设计了局部搜索策略,基于Pareto等级的支配关系设计了Q学习的状态、奖励函数,采用Q学习对双种群的数量比例进行了自适应调整;最后,采用扩展的基准算例对该改进算法的有效性进行了验证,并将其与其他算法进行了对比分析。研究结果表明:采用动态双种群搜索策略改进的NSGA2算法能有效保持种群多样性,且不易陷入局部最优,提高了算法的求解质量。该改进算法与传统NSGA2算法相比,多样性评价指标平均提高了15.34%,收敛性评价指标平均提高了76.37%,证明了该算法在解决分布式柔性作业车间多目标调度问题上的优越性。 展开更多
关键词 柔性作业车调度问题 分布式目标柔性作业车 目标调度问题求解 帕累托等级 改进非支配排序遗传算法Ⅱ 动态双种群搜索策略 Q学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部