提出了一种将时域积分方程(time domain integral equation,TDIE)方法和时域有限差分(finite differnce time domain,FDTD)方法相结合计算分层有耗半空间上方导线瞬态电磁响应的新方法.其中,一维FDTD方法用于计算入射电磁波经分层半空...提出了一种将时域积分方程(time domain integral equation,TDIE)方法和时域有限差分(finite differnce time domain,FDTD)方法相结合计算分层有耗半空间上方导线瞬态电磁响应的新方法.其中,一维FDTD方法用于计算入射电磁波经分层半空间反射的时域波形.TDIE用于求解细导线在加入两个激励源(直接入射电磁波和经分层半空间反射的电磁波)时的瞬态响应.相关计算理论和数值模拟结果说明了本文方法是一种解决了分层有耗介质上方水平放置导线瞬态响应的高效解决方案.展开更多
The indirect boundary element method(IBEM) was established to solve the problem of 3-D seismic responses of 2-D topographies,by calculating the free-field responses with the direct-stiffness method and simulating the ...The indirect boundary element method(IBEM) was established to solve the problem of 3-D seismic responses of 2-D topographies,by calculating the free-field responses with the direct-stiffness method and simulating the scattering wave fields with the dynamic Green's functions of moving distributed loads.The proposed method yields accurate results,because the 3-D dynamic stiffness matrixes used are exact and the fictitious moving distributed loads can be acted directly on the interface between the alluvial valley and the layered half-space without singularity.The comparison with the published methods verifies the validity of the proposed method.And the numerical analyses are performed to give some beneficial conclusions.The study shows that 3-D scattering by an alluvial valley is essentially different from the 2-D case,and that the presence of soil layer affects not only the amplitude value of surface displacements but also the distribution of surface displacements.展开更多
文摘提出了一种将时域积分方程(time domain integral equation,TDIE)方法和时域有限差分(finite differnce time domain,FDTD)方法相结合计算分层有耗半空间上方导线瞬态电磁响应的新方法.其中,一维FDTD方法用于计算入射电磁波经分层半空间反射的时域波形.TDIE用于求解细导线在加入两个激励源(直接入射电磁波和经分层半空间反射的电磁波)时的瞬态响应.相关计算理论和数值模拟结果说明了本文方法是一种解决了分层有耗介质上方水平放置导线瞬态响应的高效解决方案.
基金Supported by National Natural Science Foundation of China (No. 50978156 and 50908183)Tianjin Research Programof Application Foundation and Advanced Technology(12JCQNJC04700)
文摘The indirect boundary element method(IBEM) was established to solve the problem of 3-D seismic responses of 2-D topographies,by calculating the free-field responses with the direct-stiffness method and simulating the scattering wave fields with the dynamic Green's functions of moving distributed loads.The proposed method yields accurate results,because the 3-D dynamic stiffness matrixes used are exact and the fictitious moving distributed loads can be acted directly on the interface between the alluvial valley and the layered half-space without singularity.The comparison with the published methods verifies the validity of the proposed method.And the numerical analyses are performed to give some beneficial conclusions.The study shows that 3-D scattering by an alluvial valley is essentially different from the 2-D case,and that the presence of soil layer affects not only the amplitude value of surface displacements but also the distribution of surface displacements.